39 research outputs found

    CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function

    Get PDF
    Leukocyte traffic through secondary lymphoid tissues is finely tuned by chemokines. We have studied the functional properties of a human T cell subset marked by the expression of CXC chemokine receptor 5 (CXCR5). Memory but not naive T cells from tonsils are CXCR5(+) and migrate in response to the B cell-attracting chemokine 1 (BCA-1), which is selectively expressed by reticular cells and blood vessels within B cell follicles. Tonsillar CXCR5(+) T cells do not respond to other chemokines present in secondary lymphoid tissues, including secondary lymphoid tissue chemokine (SLC), EBV-induced molecule 1 ligand chemokine (ELC), and stromal cell-derived factor 1 (SDF-1). The involvement of tonsillar CXCR5(+) T cells in humoral immune responses is suggested by their localization in the mantle and light zone germinal centers of B cell follicles and by the concomitant expression of activation and costimulatory markers, including CD69, HLA-DR, and inducible costimulator (ICOS). Peripheral blood CXCR5(+) T cells also belong to the CD4(+) memory T cell subset but, in contrast to tonsillar cells, are in a resting state and migrate weakly to chemokines. CXCR5(+) T cells are very inefficient in the production of cytokines but potently induce antibody production during coculture with B cells. These properties portray CXCR5(+) T cells as a distinct memory T cell subset with B cell helper function, designated here as follicular B helper T cells (T(FH))

    Regulated Expression of CCL21 in the Prostate Tumor Microenvironment Inhibits Tumor Growth and Metastasis in an Orthotopic Model of Prostate Cancer

    Get PDF
    Currently there are no curative therapies available for patients with metastatic prostate cancer. Thus, novel therapies are needed to treat this patient population. Immunotherapy represents one promising approach for the elimination of occult metastatic tumors. However, the prostate tumor microenvironment (TME) represents a hostile environment capable of suppressing anti-tumor immunity and effector cell function. In view of this immunosuppressive activity, we engineered murine prostate cancer cells with regulated expression (tet-on) of CCL21. Prostate tumor cells implanted orthotopically produced primary prostate tumors with predictable metastatic disease in draining lymph nodes and distant organs. Expression of CCL21 in the prostate TME enhanced survival, inhibited tumor growth and decreased the frequency of local (draining lymph node) and distant metastasis. Therefore, these studies provide a strong rationale for further evaluation of CCL21 in tumor immunity and its use in cancer immunotherapy

    Novel CCL21-Vault Nanocapsule Intratumoral Delivery Inhibits Lung Cancer Growth

    Get PDF
    Based on our preclinical findings, we are assessing the efficacy of intratumoral injection of dendritic cells (DC) transduced with an adenoviral vector expressing the secondary lymphoid chemokine (CCL21) gene (Ad-CCL21-DC) in a phase I trial in advanced non-small cell lung cancer (NSCLC). While this approach shows immune enhancement, the preparation of autologous DC for CCL21 genetic modification is cumbersome, expensive and time consuming. We are evaluating a non-DC based approach which utilizes vault nanoparticles for intratumoral CCL21 delivery to mediate antitumor activity in lung cancer.Here we describe that vault nanocapsule platform for CCL21 delivery elicits antitumor activity with inhibition of lung cancer growth. Vault nanocapsule packaged CCL21 (CCL21-vaults) demonstrated functional activity in chemotactic and antigen presenting activity assays. Recombinant vaults impacted chemotactic migration of T cells and this effect was predominantly CCL21 dependent as CCL21 neutralization abrogated the CCL21 mediated enhancement in chemotaxis. Intratumoral administration of CCL21-vaults in mice bearing lung cancer enhanced leukocytic infiltrates (CXCR3(+)T, CCR7(+)T, IFNγ(+)T lymphocytes, DEC205(+) DC), inhibited lung cancer tumor growth and reduced the frequencies of immune suppressive cells [myeloid derived suppressor cells (MDSC), T regulatory cells (Treg), IL-10 T cells]. CCL21-vaults induced systemic antitumor responses by augmenting splenic T cell lytic activity against parental tumor cells.This study demonstrates that the vault nanocapsule can efficiently deliver CCL21 to sustain antitumor activity and inhibit lung cancer growth. The vault nanocapsule can serve as an "off the shelf" approach to deliver antitumor cytokines to treat a broad range of malignancies

    Low CCR7-Mediated Migration of Human Monocyte Derived Dendritic Cells in Response to Human Respiratory Syncytial Virus and Human Metapneumovirus

    Get PDF
    Human respiratory syncytial virus (HRSV) and, to a lesser extent, human metapneumovirus (HMPV) and human parainfluenza virus type 3 (HPIV3), can re-infect symptomatically throughout life without significant antigenic change, suggestive of incomplete or short-lived immunity. In contrast, re-infection by influenza A virus (IAV) largely depends on antigenic change, suggestive of more complete immunity. Antigen presentation by dendritic cells (DC) is critical in initiating the adaptive immune response. Antigen uptake by DC induces maturational changes that include decreased expression of the chemokine receptors CCR1, CCR2, and CCR5 that maintain DC residence in peripheral tissues, and increased expression of CCR7 that mediates the migration of antigen-bearing DC to lymphatic tissue. We stimulated human monocyte-derived DC (MDDC) with virus and found that, in contrast to HPIV3 and IAV, HMPV and HRSV did not efficiently decrease CCR1, 2, and 5 expression, and did not efficiently increase CCR7 expression. Consistent with the differences in CCR7 mRNA and protein expression, MDDC stimulated with HRSV or HMPV migrated less efficiently to the CCR7 ligand CCL19 than did IAV-stimulated MDDC. Using GFP-expressing recombinant virus, we showed that the subpopulation of MDDC that was robustly infected with HRSV was particularly inefficient in chemokine receptor modulation. HMPV- or HRSV-stimulated MDDC responded to secondary stimulation with bacterial lipopolysaccharide or with a cocktail of proinflammatory cytokines by increasing CCR7 and decreasing CCR1, 2 and 5 expression, and by more efficient migration to CCL19, suggesting that HMPV and HRSV suboptimally stimulate rather than irreversibly inhibit MDDC migration. This also suggests that the low concentration of proinflammatory cytokines released from HRSV- and HMPV-stimulated MDDC is partly responsible for the low CCR7-mediated migration. We propose that inefficient migration of HRSV- and HMPV-stimulated DC to lymphatic tissue contributes to reduced adaptive responses to these viruses

    Chemokines: role in inflammation and immune surveillance

    No full text
    Chemotactic migration of leucocytes largely depends on adhesive interaction with the substratum and recognition of a chemoattractant gradient. Both aspects, cell adhesion and chemotaxis, are regulated by members of the family of chemotactic cytokines (chemokines) comprising structurally related and secreted proteins of 67–127 amino acids in length. Breakdown in the control of leucocyte mobilisation contributes to chronic inflammatory diseases and, hence, interference with chemokine function is a promising approach for the development of novel anti-inflammatory medication. Chemokines target all types of leucocyte, including haematopoietic precursors, mature leucocytes of the innate immune system as well as naive, memory, and effector lymphocytes. The combinatorial diversity in responsiveness to chemokines ensures proper tissue distribution of distinct leucocyte subsets under normal and inflammatory/pathological conditions. Here, we discuss recent views on the role of chemokines in controlling tissue localisation of human memory T cells under steady state (non-inflamed) conditions. Emphasis is placed on a concept describing distinct subsets of memory T cells according to their primary residence in peripheral blood, secondary lymphoid tissues, or peripheral (extralymphoid) tissues

    Schmerztherapie in der Praxis

    Full text link

    Isolated reduction of haematocrit does not compromise in vitro blood coagulation

    Get PDF
    Low haematocrit values are generally well tolerated in terms of oxygen transport but a low haematocrit might interfere with blood coagulation. We thus sampled 60 ml of blood in 30 healthy volunteers. The blood was centrifuged for 30 min at 2000 g and separated into plasma, which contained the platelet fraction, and packed red blood cells. The blood was subsequently reconstituted by combining the entire plasma fraction with a mixture of packed red blood cells, 0.9% saline, so that the final haematocrit was either 40, 30, 20, or 10%. Blood coagulation was assessed by computerized Thrombelastograph® analysis. Data were compared using repeated measures analysis of variance and post‐hoc paired t‐tests with Bonferroni correction. Decreasing the haematocrit from 40 to 10% resulted in a shortening of reaction time (r) and coagulation time (k), and an increase in angle α, maximum amplitude (MA) and clot strength (G) (all P<0.02). This pattern represents acceleration of blood coagulation with low haematocrit values. The isolated reduction in haematocrit, therefore, does not compromise in vitro blood coagulation. Br J Anaesth 2001; 87: 246-
    corecore