5,098 research outputs found

    Calabi-Yau threefolds with large h^{2, 1}

    Get PDF
    We carry out a systematic analysis of Calabi-Yau threefolds that are elliptically fibered with section ("EFS") and have a large Hodge number h^{2, 1}. EFS Calabi-Yau threefolds live in a single connected space, with regions of moduli space associated with different topologies connected through transitions that can be understood in terms of singular Weierstrass models. We determine the complete set of such threefolds that have h^{2, 1} >= 350 by tuning coefficients in Weierstrass models over Hirzebruch surfaces. The resulting set of Hodge numbers includes those of all known Calabi-Yau threefolds with h^{2, 1} >= 350, as well as three apparently new Calabi-Yau threefolds. We speculate that there are no other Calabi-Yau threefolds (elliptically fibered or not) with Hodge numbers that exceed this bound. We summarize the theoretical and practical obstacles to a complete enumeration of all possible EFS Calabi-Yau threefolds and fourfolds, including those with small Hodge numbers, using this approach.Comment: 44 pages, 5 tables, 5 figures; v2: minor corrections; v3: minor corrections, moved figure; v4: typo in Table 2 correcte

    Geometric constraints in dual F-theory and heterotic string compactifications

    Get PDF
    We systematically analyze a broad class of dual heterotic and F-theory models that give four-dimensional supergravity theories, and compare the geometric constraints on the two sides of the duality. Specifically, we give a complete classification of models where the heterotic theory is compactified on a smooth Calabi-Yau threefold that is elliptically fibered with a single section and carries smooth irreducible vector bundles, and the dual F-theory model has a corresponding threefold base that has the form of a P^1 bundle. We formulate simple conditions for the geometry on the F-theory side to support an elliptically fibered Calabi-Yau fourfold. We match these conditions with conditions for the existence of stable vector bundles on the heterotic side, and show that F-theory gives new insight into the conditions under which such bundles can be constructed. In particular, we find that many allowed F-theory models correspond to vector bundles on the heterotic side with exceptional structure groups, and determine a topological condition that is only satisfied for bundles of this type. We show that in many cases the F-theory geometry imposes a constraint on the extent to which the gauge group can be enhanced, corresponding to limits on the way in which the heterotic bundle can decompose. We explicitly construct all (4962) F-theory threefold bases for dual F-theory/heterotic constructions in the subset of models where the common twofold base surface is toric, and give both toric and non-toric examples of the general results.Comment: 81 pages, 2 figures; v2, v3: references added, minor corrections; v4: minor errors, Table 5 correcte

    Matter in transition

    Get PDF
    We explore a novel type of transition in certain 6D and 4D quantum field theories, in which the matter content of the theory changes while the gauge group and other parts of the spectrum remain invariant. Such transitions can occur, for example, for SU(6) and SU(7) gauge groups, where matter fields in a three-index antisymmetric representation and the fundamental representation are exchanged in the transition for matter in the two-index antisymmetric representation. These matter transitions are realized by passing through superconformal theories at the transition point. We explore these transitions in dual F-theory and heterotic descriptions, where a number of novel features arise. For example, in the heterotic description the relevant 6D SU(7) theories are described by bundles on K3 surfaces where the geometry of the K3 is constrained in addition to the bundle structure. On the F-theory side, non-standard representations such as the three-index antisymmetric representation of SU(N) require Weierstrass models that cannot be realized from the standard SU(N) Tate form. We also briefly describe some other situations, with groups such as Sp(3), SO(12), and SU(3), where analogous matter transitions can occur between different representations. For SU(3), in particular, we find a matter transition between adjoint matter and matter in the symmetric representation, giving an explicit Weierstrass model for the F-theory description of the symmetric representation that complements another recent analogous construction.Comment: 107 pages, 3 figures, 32 tables. In version 2, one figure and comments added on the geometry of matter transition

    An Analysis of the Spatio-Temporal Factors Affecting Aircraft Conflicts Based on Simulation Modelling

    Get PDF
    The demand for air travel worldwide continues to grow at a rapid rate, especially in Europe and the United States. In Europe, the demand exceeded predictions with a real annual growth of 7.1% in the period 1985-1990, against a prediction of 2.4%. By the year 2010, the demand is expected to double from the 1990 level. Within the UK international scheduled passenger traffic is predicted to increase, on average, by 5.8 per cent per year between 1999 and 2003. The demand has not been matched by availability of capacity. In Western Europe many of the largest airports suffer from runway capacity constraints. Europe also suffers from an en-route airspace capacity constraint, which is determined by the workload of the air traffic controllers, i.e. the physical and mental work that controllers must undertake to safely conduct air traffic under their jurisdiction through en-route airspace. The annual cost to Europe due to air traffic inefficiency and congestion in en-route airspace is estimated to be 5 billion US Dollars, primarily due to delays caused by non-optimal route structures and reduced productivity of controllers due to equipment inefficiencies. Therefore, to in order to decrease the total delay, an increase in en-route capacity is of paramount importance. At a global scale and in the early 1980s, the International Civil Aviation Organisation (ICAO) recognised that the traditional air traffic control (ATC) systems would not cope with the growth in demand for capacity. Consequently new technologies and procedures have been proposed to enable ATC to cope with this demand, e.g. satellite-based system concept to meet the future civil aviation requirements for communication, navigation and surveillance/ air traffic management (CNS/ATM). In Europe, the organisation EUROCONTROL (established in 1960 to co-ordinate European ATM) proposed a variety of measures to increase the capacity of en-route airspace. A key change envisaged is the increasing delegation of responsibilities for control to flight crew, by the use of airborne separation assurance between aircraft, leading eventually to ?free flight? airspace. However, there are major concerns regarding the safety of operations in ?free flight? airspace. The safety of such airspace can be investigated by analysing the factors that affect conflict occurrence, i.e. a loss of the prescribed separation between two aircraft in airspace. This paper analyses the factors affecting conflict occurrence in current airspace and future free flight airspace by using a simulation model of air traffic controller workload, the RAMS model. The paper begins with a literature review of the factors that affect conflict occurrence. This is followed by a description of the RAMS model and of its use in this analysis. The airspace simulated is the Mediterranean Free Flight region, and the major attributes of this region and of the traffic demand patterns are outlined next. In particular a day?s air traffic is simulated in the two airspace scenarios, and rules for conflict detection and resolution are carefully defined. The following section outlines the framework for analysing the output from the simulations, using negative binomial (NB) and generalised negative binomial (GNB) regression, and discusses the estimation methods required. The next section presents the results of the regression analysis, taking into account the spatio-temporal nature of the data. The following section presents an analysis of the spatial and temporal pattern of conflicts in the two airspace scenarios across a day, highlighting possible metrics to indicate this. The paper concludes with future research directions based upon this analysis.

    String universality in ten dimensions

    Full text link
    We show that the N=1{\cal N}=1 supergravity theories in ten dimensions with gauge groups U(1)496U(1)^{496} and E8×U(1)248E_8 \times U(1)^{248} are not consistent quantum theories. Cancellation of anomalies cannot be made compatible with supersymmetry and abelian gauge invariance. Thus, in ten dimensions all supersymmetric theories of gravity without known inconsistencies are realized in string theory.Comment: 7 pages, 1 figure, LaTeX. v2: typos corrected on version appearing in PR

    Practical Hidden Voice Attacks against Speech and Speaker Recognition Systems

    Full text link
    Voice Processing Systems (VPSes), now widely deployed, have been made significantly more accurate through the application of recent advances in machine learning. However, adversarial machine learning has similarly advanced and has been used to demonstrate that VPSes are vulnerable to the injection of hidden commands - audio obscured by noise that is correctly recognized by a VPS but not by human beings. Such attacks, though, are often highly dependent on white-box knowledge of a specific machine learning model and limited to specific microphones and speakers, making their use across different acoustic hardware platforms (and thus their practicality) limited. In this paper, we break these dependencies and make hidden command attacks more practical through model-agnostic (blackbox) attacks, which exploit knowledge of the signal processing algorithms commonly used by VPSes to generate the data fed into machine learning systems. Specifically, we exploit the fact that multiple source audio samples have similar feature vectors when transformed by acoustic feature extraction algorithms (e.g., FFTs). We develop four classes of perturbations that create unintelligible audio and test them against 12 machine learning models, including 7 proprietary models (e.g., Google Speech API, Bing Speech API, IBM Speech API, Azure Speaker API, etc), and demonstrate successful attacks against all targets. Moreover, we successfully use our maliciously generated audio samples in multiple hardware configurations, demonstrating effectiveness across both models and real systems. In so doing, we demonstrate that domain-specific knowledge of audio signal processing represents a practical means of generating successful hidden voice command attacks
    • …
    corecore