882 research outputs found
Aerodynamic design and analysis of the AST-204, AST-205, and AST-206 blended wing-fuse large supersonic transport configuration concepts
The aerodynamic design and analysis of three blended wing-fuselage supersonic cruise configurations providing four, five, and six abreast seating was conducted using a previously designed supersonic cruise configuration as the baseline. The five abreast configuration was optimized for wave drag at a Mach number of 2.7. The four and six abreast configurations were also optimized at Mach 2.7, but with the added constraint that the majority of their structure be common with the five abreast configuration. Analysis of the three configurations indicated an improvement of 6.0, 7.5, and 7.7 percent in cruise lift-to-drag ratio over the baseline configuration for the four, five, and six abreast configurations, respectively
A computer program for wing subsonic aerodynamic performance estimates including attainable thrust and vortex lift effects
Numerical methods incorporated into a computer program to provide estimates of the subsonic aerodynamic performance of twisted and cambered wings of arbitrary planform with attainable thrust and vortex lift considerations are described. The computational system is based on a linearized theory lifting surface solution which provides a spanwise distribution of theoretical leading edge thrust in addition to the surface distribution of perturbation velocities. The approach used relies on a solution by iteration. The method also features a superposition of independent solutions for a cambered and twisted wing and a flat wing of the same planform to provide, at little additional expense, results for a large number of angles of attack or lift coefficients. A previously developed method is employed to assess the portion of the theoretical thrust actually attainable and the portion that is felt as a vortex normal force
An aerodynamic analysis computer program and design notes for low speed wing flap systems
The expanded capabilities for analysis and design of low speed flap systems afforded by recent modifications of an existing computer program is described. The program provides for the simultaneous analysis of up to 25 pairs of leading-edge and trailing-edge flap deflection schedules. Among other new features of the program are a revised attainable thrust estimation method to provide more accurate predictions for low Mach numbers, and a choice of three options for estimation of leading-edge separation vortex flow effects. Comparison of program results with low speed experimental data for an arrow wing supersonic cruise configuration with leading-edge and trailing-edge flaps showed good agreement over most of the range of flap deflections. Other force data comparisons and an independent study of airfoil and wing pressure distributions indicated that wind-tunnel measurements of the aerodynamic performance of twisted and cambered wings and wings with leading-edge flaps can be very sensitive to Reynolds number effects
Aerodynamic design and analysis of the AST-200 supersonic transport configuration concept
The design and analysis of a supersonic transport configuration was conducted using linear theory methods in conjunction with appropriate constraints. Wing optimization centered on the determination of the required twist and camber and proper integration of the wing and fuselage. Also included in the design are aerodynamic refinements to the baseline wing thickness distribution and nacelle shape. Analysis to the baseline and revised configurations indicated an improvement in lift-to-drag ratio of 0.36 at the Mach 2.7 cruise condition. Validation of the design is planned through supersonic wing tunnel tests
Numerical methods and a computer program for subsonic and supersonic aerodynamic design and analysis of wings with attainable thrust considerations
This paper describes methodology and an associated computer program for the design of wing lifting surfaces with attainable thrust taken into consideration. The approach is based on the determination of an optimum combination of a series of candidate surfaces rather than the more commonly used candidate loadings. Special leading-edge surfaces are selected to provide distributed leading-edge thrust forces which compensate for any failure to achieve the full theoretical leading-edge thrust, and a second series of general candidate surfaces is selected to minimize drag subject to constraints on the lift coefficient and, if desired, on the pitching moment coefficient. A primary purpose of the design approach is the introduction of attainable leading-edge thrust considerations so that relatively mild camber surfaces may be employed in the achievement of aerodynamic efficiencies comparable to those attainable if full theoretical leading-edge thrust could be achieved. The program provides an analysis as well as a design capability and is applicable to both subsonic and supersonic flow
Discontinuous galerkin spectral/hp element modelling of dispersive shallow water systems
A procedure for the determination of the effect of fuselage nose bluntness on the wave drag of supersonic cruise aircraft
The incremental wave drag penalty due to nose blunting of a fuselage was investigated using a three dimensional finite difference scheme. An aircraft typical of current supersonic cruise concepts was considered. Computational problems with the finite difference scheme as the fuselage afterbody closes were addressed. A linear theory method was employed to compute the afterbody aerodynamics and effectively extends the finite difference scheme to closing afterbodies. Acceptable drag increments for various levels of nose bluntness were demonstrated using this approach
Finite element simulation of three-dimensional free-surface flow problems
An adaptive finite element algorithm is described for the stable solution of three-dimensional free-surface-flow problems based primarily on the use of node movement. The algorithm also includes a discrete remeshing procedure which enhances its accuracy and robustness. The spatial discretisation allows an isoparametric piecewise-quadratic approximation of the domain geometry for accurate resolution of the curved free surface.
The technique is illustrated through an implementation for surface-tension-dominated viscous flows modelled in terms of the Stokes equations with suitable boundary conditions on the deforming free surface. Two three-dimensional test problems are used to demonstrate the performance of the method: a liquid bridge problem and the formation of a fluid droplet
Effects of Expert Testimony and Interrogation Tactics on Perceptions of Confessions
Evidence obtained through the process of interrogation is frequently undermined by what can be perceived as overzealous interrogation tactics. Although the majority of psychologically oriented tactics are legally permissible, they nonetheless contribute to innocent suspects confessing to crimes they did not commit. The present study examined the effect of expert testimony and interrogation tactics on perceptions of a confession. 182 undergraduates read a transcript of a homicide trial that varied based on interrogation tactic: implicit threat of punishment (maximization) or leniency (minimization) and expert witness testimony (presence or absence of expert testimony). Analysis indicated that the type of interrogation tactic used in obtaining the confession affected participants\u27 perceptions of the coerciveness of the interrogation process
- …
