107 research outputs found
Transfer reactions and the dispersive optical-model
The dispersive optical-model is applied to transfer reactions. A systematic
study of reactions on closed-shell nuclei using the finite-range
adiabatic reaction model is performed at several beam energies and results are
compared to data as well as to predictions using a standard global
optical-potential. Overall, we find that the dispersive optical-model is able
to describe the angular distributions as well as or better than the global
parameterization. In addition, it also constrains the overlap function.
Spectroscopic factors extracted using the dispersive optical-model are
generally lower than those using standard parameters, exhibit a reduced
dependence on beam energy, and are more in line with results obtained from
measurements.Comment: Phys. Rev. C 84, 044611 (2011
Using the third state of matter: high harmonic generation from liquid targets
High harmonic generation on solid and gaseous targets has been proven to be a powerful platform for the generation of attosecond pulses. Here we demonstrate a novel technique for the XUV generation on a smooth liquid surface target in vacuum, which circumvents the problem of low repetition rate and limited shot numbers associated with solid targets, while it maintains some of its merits. We employed atomically smooth, continuous liquid jets of water, aqueous salt solutions and ethanol that allow uninterrupted high harmonic generation due to the coherent wake emission mechanism for over 8 h. It has been found that the mechanism of plasma generation is very similar to that for smooth solid target surfaces. The vapor pressure around the liquid target in our setup has been found to be very low such that the presence of the gas phase around the liquid jet could be neglected
Experimental Observation of ABCB Stacked Tetralayer Graphene
In tetralayer graphene, three inequivalent layer stackings should exist; however, only rhombohedral (ABCA) and Bernal (ABAB) stacking have so far been observed. The three stacking sequences differ in their electronic structure, with the elusive third stacking (ABCB) being unique as it is predicted to exhibit an intrinsic bandgap as well as locally flat bands around the K points. Here, we use scattering-type scanning near-field optical microscopy and confocal Raman microscopy to identify and characterize domains of ABCB stacked tetralayer graphene. We differentiate between the three stacking sequences by addressing characteristic interband contributions in the optical conductivity between 0.28 and 0.56 eV with amplitude and phase-resolved near-field nanospectroscopy. By normalizing adjacent flakes to each other, we achieve good agreement between theory and experiment, allowing for the unambiguous assignment of ABCB domains in tetralayer graphene. These results establish near-field spectroscopy at the interband transitions as a semiquantitative tool, enabling the recognition of ABCB domains in tetralayer graphene flakes and, therefore, providing a basis to study correlation physics of this exciting phase
Twist angle dependent interlayer transfer of valley polarization from excitons to free charge carriers in WSe2/MoSe2 heterobilayers
Transition metal dichalcogenides (TMDs) have attracted much attention in the fields of valley- and spintronics due to their property of forming valley-polarized excitons when illuminated by circularly polarized light. In TMD-heterostructures it was shown that these electron-hole pairs can scatter into valley-polarized interlayer exciton states, which exhibit long lifetimes and a twist-angle dependence. However, the question how to create a valley polarization of free charge carriers in these heterostructures after a valley selective optical excitation is unexplored, despite its relevance for opto-electronic devices. Here, we identify an interlayer transfer mechanism in twisted WSe2/MoSe2 heterobilayers that transfers the valley polarization from excitons in WSe2 to free charge carriers in MoSe2 with valley lifetimes of up to 12 ns. This mechanism is most efficient at large twist angles, whereas the valley lifetimes of free charge carriers are surprisingly short for small twist angles, despite the occurrence of interlayer excitons
Zinc Sensing Receptor Signaling, Mediated by GPR39, Reduces Butyrate-Induced Cell Death in HT29 Colonocytes via Upregulation of Clusterin
Zinc enhances epithelial proliferation, protects the digestive epithelial layer and has profound antiulcerative and antidiarrheal roles in the colon. Despite the clinical significance of this ion, the mechanisms linking zinc to these cellular processes are poorly understood. We have previously identified an extracellular Zn2+ sensing G-protein coupled receptor (ZnR) that activates Ca2+ signaling in colonocytes, but its molecular identity as well as its effects on colonocytes' survival remained elusive. Here, we show that Zn2+, by activation of the ZnR, protects HT29 colonocytes from butyrate induced cell death. Silencing of the G-protein coupled receptor GPR39 expression abolished ZnR-dependent Ca2+ release and Zn2+-dependent survival of butyrate-treated colonocytes. Importantly, GPR39 also mediated ZnR-dependent upregulation of Na+/H+ exchange activity as this activity was found in native colon tissue but not in tissue obtained from GPR39 knock-out mice. Although ZnR-dependent upregulation of Na+/H+ exchange reduced the cellular acid load induced by butyrate, it did not rescue HT29 cells from butyrate induced cell death. ZnR/GPR39 activation however, increased the expression of the anti-apoptotic protein clusterin in butyrate-treated cells. Furthermore, silencing of clusterin abolished the Zn2+-dependent survival of HT29 cells. Altogether, our results demonstrate that extracellular Zn2+, acting through ZnR, regulates intracellular pH and clusterin expression thereby enhancing survival of HT29 colonocytes. Moreover, we identify GPR39 as the molecular moiety of ZnR in HT29 and native colonocytes
Inter-diffusion of Plasmonic Metals and Phase Change Materials
This work investigates the problematic diffusion of metal atoms into phase
change chalcogenides, which can destroy resonances in photonic devices.
Interfaces between Ge2Sb2Te5 and metal layers were studied using X-ray
reflectivity (XRR) and reflectometry of metal-Ge2Sb2Te5 layered stacks. The
diffusion of metal atoms influences the crystallisation temperature and optical
properties of phase change materials. When Au, Ag, Al, W structures are
directly deposited on Ge2Sb2Te5 inter-diffusion occurs. Indeed, Au forms AuTe2
layers at the interface. Diffusion barrier layers, such as Si3N4 or stable
diffusionless plasmonic materials, such as TiN, can prevent the interfacial
damage. This work shows that the interfacial diffusion must be considered when
designing phase change material tuned photonic devices, and that TiN is the
most suitable plasmonic material to interface directly with Ge2Sb2Te5.Comment: 23 pages, 8 figures, articl
Epigenetics Offer New Horizons for Colorectal Cancer Prevention
In recent years, colorectal cancer (CRC) incidence has been increasing to become a major cause of morbidity and mortality worldwide from cancers, with high rates in westernized societies and increasing rates in developing countries. Epigenetic modifications including changes in DNA methylation, histone modifications, and non-coding RNAs play a critical role in carcinogenesis. Epidemiological data suggest that, in comparison to other cancers, these alterations are particularly common within the gastrointestinal tract. To explain these observations, environmental factors and especially diet were suggested to both prevent and induce CRC. Epigenetic alterations are, in contrast to genetic modifications, potentially reversible, making the use of dietary agents a promising approach in CRC for the development of chemopreventive strategies targeting epigenetic mechanisms. This review focuses on CRC-related epigenetic alterations as a rationale for various levels of prevention strategies and their potential modulation by natural dietary compounds
- β¦