50,689 research outputs found

    Heavy Diquark Symmetry Constraints for Strong Decays

    Full text link
    The Heavy Diquark Symmetry (HDS) of Doubly Heavy Baryons (DHBs) provides new insights into the spectroscopy of these hadrons. We derive the consequences of this symmetry for the mass spectra and the decay widths of DHBs. We compare these symmetry constraints to results from a nonrelativistic quark model for the mass spectra and results from the 3P0^3P_0 model for strong decays. The quark model we implement was not constructed with these symmetries and contains interactions which explicitly break HDS. Nevertheless, these symmetries emerge. We argue that the 3P0^3P_0 model and any other model for strong transitions which employs a spectator assumption explicitly respects HDS. We also explore the possibility of treating the strange quark as a heavy quark and apply these ideas to Ξ\Xi, Ξc\Xi_c, and Ξb\Xi_b baryons.Comment: 28 page

    Correlation of part-span damper losses through transonic rotors operating near design point

    Get PDF
    The design-point losses caused by part-span dampers (PSD) were correlated for 21 transonic axial flow fan rotors that had tip speeds varying from 350 to 488 meters per second and design pressure ratios of 1.5 to 2.0. For these rotors a correlation using mean inlet Mach number at the damper location, along with relevant geometric and aerodynamic loading parameters, predicts the variation of total pressure loss coefficient in the region of the damper to a good approximation

    An experimental investigation of internal area ruling for transonic and supersonic channel flow

    Get PDF
    A simulated transonic rotor channel model was examined experimentally to verify the flow physics of internal area ruling. Pressure measurements were performed in the high speed wind tunnel at transonic speeds with Mach 1.5 and Mach 2 nozzle blocks to get an indication of the approximate shock losses. The results showed a reduction in losses due to internal area ruling with the Mach 1.5 nozzle blocks. The reduction in total loss coefficient was of the order of 17 percent for a high blockage model and 7 percent for a cut-down model

    Secondary flow spanwise deviation model for the stators of NASA middle compressor stages

    Get PDF
    A model of the spanwise variation of deviation for stator blades is presented. Deviation is defined as the difference between the passage mean flow angle and the metal angle at the outlet of a blade element of an axial compressor stage. The variation of deviation is taken as the difference above or below that predicted by blade element, (i.e., two-dimensional) theory at any spanwise location. The variation of deviation is dependent upon the blade camber, solidity and inlet boundary layer thickness at the hub or tip end-wall, and the blade channel aspect ratio. If these parameters are known or can be calculated, the model provides a reasonable approximation of the spanwise variation of deviation for most compressor middle stage stators operating at subsonic inlet Mach numbers

    The role of follow-on contracts in government-sponsored research and development

    Get PDF
    Role of follow-on contracts in government sponsored research and developmen

    The Physics Case for the New Muon (g-2) Experiment

    Full text link
    This White Paper briefly reviews the present status of the muon (g-2) experiment and the physics motivation for a new effort. The present comparison between experiment and theory indicates a tantalizing 3.4σ3.4 \sigma deviation. An improvement in precision on this comparison by a factor of 2--with the central value remaining unchanged--will exceed the ``discovery'' threshold, with a sensitivity above 6σ6 \sigma. The 2.5-fold reduction improvement goal of the new Brookhaven E969 experiment, along with continued steady reduction of the standard model theory uncertainty, will achieve this more definitive test. Already, the (g-2) result is arguably the most compelling indicator of physics beyond the standard model and, at the very least, it represents a major constraint for speculative new theories such as supersymmetry or extra dimensions. In this report, we summarize the present experimental status and provide an up-to-date accounting of the standard model theory, including the expectations for improvement in the hadronic contributions, which dominate the overall uncertainty. Our primary focus is on the physics case that motivates improved experimental and theoretical efforts. Accordingly, we give examples of specific new-physics implications in the context of direct searches at the LHC as well as general arguments about the role of an improved (g-2) measurement. A brief summary of the plans for an upgraded effort complete the report.Comment: 18 pages, 7 figure

    Development of a CCD for ultraviolet imaging using a CCD photocathode combination

    Get PDF
    CCD in the electron-in mode, coupled with a bi-alkali photocathode to produce UV photon conversion, provides the following desirable features: (1) high UV response of the bi-alkali photocathode; (2) excellent imaging quality of a CCD area array; and (3) high signal-to-noise ratio due to the EBS (electron bombarded silicon) gain of the CCD operating in a tube configuration. This paper describes the rationale and progress made in developing a CCD for use as an UV imager

    Off-design correlation for losses due to part-span dampers on transonic rotors

    Get PDF
    Experimental data from 10 transonic fan rotors were used to correlate losses created by part-span dampers located near the midchord position on the rotor blades. The design tip speed of these rotors varied from 419 to 425 m/sec, and the design pressure ratio varied from 1.6 to 2.0. Additional loss caused by the dampers for operating conditions between 50 and 100 percent of design speed were correlated with relevant aerodynamic and geometric parameters. The resulting correlation predicts the variation of total-pressure-loss coefficient in the damper region to a good approximation

    Polarization Observables for Two-Pion Production off the Nucleon

    Full text link
    We develop polarization observables for the processes γNππN\gamma N\to\pi\pi N and πNππN\pi N\to\pi\pi N, using both a helicity and hybrid helicity-transversity basis. Such observables are crucial if processes that produce final states consisting of a spin-1/2 baryon and two pseudoscalar mesons are to be fully exploited for baryon spectroscopy. We derive relationships among the observables, as well as inequalities that they must satisfy. We also discuss the observables that must be measured in `complete' experiments, and briefly examine the prospects for measurement of some of these observables in the near future.Comment: 20 pages, using revtex

    On Supermultiplet Twisting and Spin-Statistics

    Full text link
    Twisting of off-shell supermultiplets in models with 1+1-dimensional spacetime has been discovered in 1984, and was shown to be a generic feature of off-shell representations in worldline supersymmetry two decades later. It is shown herein that in all supersymmetric models with spacetime of four or more dimensions, this off-shell supermultiplet twisting, if non-trivial, necessarily maps regular (non-ghost) supermultiplets to ghost supermultiplets. This feature is shown to be ubiquitous in all fully off-shell supersymmetric models with (BV/BRST-treated) constraints.Comment: Extended version, including a new section on manifestly off-shell and supersymmetric BRST treatment of gauge symmetry; added reference
    corecore