178 research outputs found

    The retarding ion mass spectrometer on dynamics Explorer-A

    Get PDF
    An instrument designed to measure the details of the thermal plasma distribution combines the ion temperature-determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram directions. The retarding ion mass spectrometer, its operational modes and calibration are described as well as the data reduction plan, and the anticipated results

    Switching Mechanism in Single-Layer Molybdenum Disulfide Transistors: an Insight into Current Flow across Schottky Barriers

    Full text link
    In this article, we study the properties of metal contacts to single-layer molybdenum disulfide (MoS2) crystals, revealing the nature of switching mechanism in MoS2 transistors. On investigating transistor behavior as contact length changes, we find that the contact resistivity for metal/MoS2 junctions is defined by contact area instead of contact width. The minimum gate dependent transfer length is ~0.63 {\mu}m in the on-state for metal (Ti) contacted single-layer MoS2. These results reveal that MoS2 transistors are Schottky barrier transistors, where the on/off states are switched by the tuning the Schottky barriers at contacts. The effective barrier heights for source and drain barriers are primarily controlled by gate and drain biases, respectively. We discuss the drain induced barrier narrowing effect for short channel devices, which may reduce the influence of large contact resistance for MoS2 Schottky barrier transistors at the channel length scaling limit.Comment: ACS Nano, ASAP (2013

    Optoelectronics with electrically tunable PN diodes in a monolayer dichalcogenide

    Full text link
    One of the most fundamental devices for electronics and optoelectronics is the PN junction, which provides the functional element of diodes, bipolar transistors, photodetectors, LEDs, and solar cells, among many other devices. In conventional PN junctions, the adjacent p- and n-type regions of a semiconductor are formed by chemical doping. Materials with ambipolar conductance, however, allow for PN junctions to be configured and modified by electrostatic gating. This electrical control enables a single device to have multiple functionalities. Here we report ambipolar monolayer WSe2 devices in which two local gates are used to define a PN junction exclusively within the sheet of WSe2. With these electrically tunable PN junctions, we demonstrate both PN and NP diodes with ideality factors better than 2. Under excitation with light, the diodes show photodetection responsivity of 210 mA/W and photovoltaic power generation with a peak external quantum efficiency of 0.2%, promising numbers for a nearly transparent monolayer sheet in a lateral device geometry. Finally, we demonstrate a light-emitting diode based on monolayer WSe2. These devices provide a fundamental building block for ubiquitous, ultra-thin, flexible, and nearly transparent optoelectronic and electronic applications based on ambipolar dichalcogenide materials.Comment: 14 pages, 4 figure

    Observation of isotonic symmetry for enhanced quadrupole collectivity in neutron-rich 62,64,66Fe isotopes at N=40

    Full text link
    The transition rates for the 2_{1}^{+} states in 62,64,66Fe were studied using the Recoil Distance Doppler-Shift technique applied to projectile Coulomb excitation reactions. The deduced E2 strengths illustrate the enhanced collectivity of the neutron-rich Fe isotopes up to N=40. The results are interpreted by the generalized concept of valence proton symmetry which describes the evolution of nuclear structure around N=40 as governed by the number of valence protons with respect to Z~30. The deformation suggested by the experimental data is reproduced by state-of-the-art shell calculations with a new effective interaction developed for the fpgd valence space.Comment: 4 pages, 2 figure

    Key 19^{19}Ne states identified affecting γ\gamma-ray emission from 18^{18}F in novae

    Get PDF
    Detection of nuclear-decay γ\gamma rays provides a sensitive thermometer of nova nucleosynthesis. The most intense γ\gamma-ray flux is thought to be annihilation radiation from the β+\beta^+ decay of 18^{18}F, which is destroyed prior to decay by the 18^{18}F(pp,α\alpha)15^{15}O reaction. Estimates of 18^{18}F production had been uncertain, however, because key near-threshold levels in the compound nucleus, 19^{19}Ne, had yet to be identified. This Letter reports the first measurement of the 19^{19}F(3^{3}He,tγt\gamma)19^{19}Ne reaction, in which the placement of two long-sought 3/2+^+ levels is suggested via triton-γ\gamma-γ\gamma coincidences. The precise determination of their resonance energies reduces the upper limit of the rate by a factor of 1.5−171.5-17 at nova temperatures and reduces the average uncertainty on the nova detection probability by a factor of 2.1.Comment: 6 pages, 4 figure

    New γ\gamma-ray Transitions Observed in 19^{19}Ne with Implications for the 15^{15}O(α\alpha,γ\gamma)19^{19}Ne Reaction Rate

    Get PDF
    The 15^{15}O(α\alpha,γ\gamma)19^{19}Ne reaction is responsible for breakout from the hot CNO cycle in Type I x-ray bursts. Understanding the properties of resonances between Ex=4E_x = 4 and 5 MeV in 19^{19}Ne is crucial in the calculation of this reaction rate. The spins and parities of these states are well known, with the exception of the 4.14- and 4.20-MeV states, which have adopted spin-parities of 9/2−^- and 7/2−^-, respectively. Gamma-ray transitions from these states were studied using triton-γ\gamma-γ\gamma coincidences from the 19^{19}F(3^{3}He,tγt\gamma)19^{19}Ne reaction measured with GODDESS (Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies) at Argonne National Laboratory. The observed transitions from the 4.14- and 4.20-MeV states provide strong evidence that the JπJ^\pi values are actually 7/2−^- and 9/2−^-, respectively. These assignments are consistent with the values in the 19^{19}F mirror nucleus and in contrast to previously accepted assignments

    Reduced dielectric screening and enhanced energy transfer in single and few-layer MoS2

    Full text link
    We report highly efficient non-radiative energy transfer from cadmium selenide (CdSe) quantum dots to monolayer and few-layer molybdenum disulfide (MoS2). The quenching of the donor quantum dot photoluminescence increases as the MoS2 flake thickness decreases, with the highest efficiency (>95%) observed for monolayer MoS2. This counterintuitive result arises from reduced dielectric screening in thin layer semiconductors having unusually large permittivity and a strong in-plane transition dipole moment, as found in MoS2. Excitonic energy transfer between a 0D emitter and a 2D absorber is fundamentally interesting and enables a wide range of applications including broadband optical down-conversion, optical detection, photovoltaic sensitization, and color shifting in light-emitting devices.Comment: 14 pages, 4 figure

    Direct Reaction Measurements Using GODDESS

    Get PDF
    GODDESS is a coupling of the charged-particle detection system ORRUBA to the gamma-ray detector array Gammasphere. This coupling has been developed in order to facilitate the high-resolution measurement of direct reactions in normal and inverse kinematics with stable and radioactive beams. GODDESS has been commissioned using a beam of 134Xe at 10 MeV/A, in a campaign of stable beam measurements. The measurement demonstrates the capabilities of GODDESS under radioactive beam conditions, and provides the first data on the single-neutron states in 135Xe, including previously unobserved states based on the orbitals above the N=82 shell closure

    Angle-integrated measurements of the 26Al (d, n)27Si reaction cross section: a probe of spectroscopic factors and astrophysical resonance strengths

    Get PDF
    Measurements of angle-integrated cross sections to discrete states in 27Si have been performed studying the 26Al (d, n) reaction in inverse kinematics by tagging states by their characteristic γ \gamma -decays using the GRETINA array. Transfer reaction theory has been applied to derive spectroscopic factors for strong single-particle states below the proton threshold, and astrophysical resonances in the 26Al (p,γ \gamma) 27Si reaction. Comparisons are made between predictions of the shell model and known characteristics of the resonances. Overall very good agreement is obtained, indicating this method can be used to make estimates of resonance strengths for key reactions currently largely unconstrained by experiment
    • …
    corecore