7 research outputs found

    Optical properties of exfoliated MoS2 coaxial nanotubes - analogues of graphene

    Get PDF
    We report on the first exfoliation of MoS2 coaxial nanotubes. The single-layer flakes, as the result of exfoliation, represent the transition metal dichalcogenides' analogue of graphene. They show a very low degree of restacking in comparison with exfoliation of MoS2 plate-like crystals. MoS2 monolayers were investigated by means of electron and atomic force microscopies, showing their structure, and ultraviolet-visible spectrometry, revealing quantum confinement as the consequence of the nanoscale size in the z-direction

    Inorganic Nanotubes and Fullerene-like Nanoparticles at the Crossroads between Solid-State Chemistry and Nanotechnology

    No full text
    Inorganic nanotubes (NTs) and fullerene-like nanoparticles (NPs) of WS2 were discovered some 25 years ago and are produced now on a commercial scale for various applications. This Perspective provides a brief description of recent progress in this scientific discipline. The conceptual evolution leading to the discovery of these NTs and NPs is briefly discussed. Subsequently, recent progress in the synthesis of such NPs from a variety of inorganic compounds with layered (2D) structure is described. In particular, we discuss the synthesis of NTs from chalcogenide- and oxide-based ternary misfit layered compounds, as well as their structure and different growth mechanisms. Next we deliberate on the mechanical, optical, electrical, and electromechanical properties, which delineate them from their bulk counterparts and also from their graphene-like analogues. Here, different experiments with individual NTs coupled with first principles and molecular dynamics calculations demonstrate the unique physical nature of these quasi-1D nanostructures. Finally, the various applications of the fullerene-like NPs of WS2 and NTs formed therefrom are deliberated. Foremost among the possibilities are their extensive uses as superior solid lubricants. Combined with their nontoxicity and their facile dispersion, these NTs, with an ultimate strength of about 20 GPa, are likely to find numerous applications in reinforcing polymers, adhesives, textiles, medical devices, metallic alloys, and even concrete. Other potential applications in energy harvesting and catalysis are discussed in brief

    Silica aerogels as hosting matrices for WS2 nanotubes and their optical characterization

    No full text
    Due to their high porosity, aerogels can be efficiently used as host matrices for functional materials. The solid matrix is advantageous over liquid suspensions because it maintains the nanoparticles static and inhibits agglomeration and precipitation. The current paper reports on the controlled addition of less than 0.1 wt% of WS2 nanotubes (WS2 NTs) to aerogels, retaining the aerogel’s mesoporous structure, and demonstrates how increasing nanotubes’ concentration influences the optical properties of the composite aerogel. The absorption spectrum of WS2 NTs consists of two peaks, attributed to the direct gap transition and referred to as excitons A and B and is preserved in the aerogel. WS2 NTs’ extinction spectrum, on the other hand, is dominated by exciton–polaritons and is modified in the aerogel, with respect to the NTs dispersed in liquid. This occurs due to scattering effects, resulting in broadening with increased NT content, washing out the excitonic transitions. Furthermore, femtosecond optical pump–probe measurements carried out on NTs dispersed in both ethanol and the silica aerogel suggest that the electronic processes underlying the overall optical behaviour of the nanotubes, and hence also their optoelectronic and photochemical properties are preserved in the aerogel matrix. These findings make the obtained nanocomposites interesting for use in modern optical and optoelectronic devices

    Co-precipitation synthesis and characterization of faceted MoS2 nanorods with controllable morphologies

    No full text
    Molybdenum disulfide (MoS2) nanopowder has been prepared using a co-precipitation method. This paper describes the thermal effect on the morphology enhancement of MoS2 sphere-like structures into nanorods with a winding structure. For the reduction in precursors, the as-obtained MoS2 nanopowder was calcinated at 250, 400, 600, and 800 degrees C for 1 h in an N-2 environment. The calcined samples were characterized using a particle size analyzer, X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy with X-ray analysis (EDAX) and transmission electron microscopy, HRTEM and X-ray photoelectron spectroscopy. The results show the MoS2 sphere-like structure with diameter in the range of 50-100 nm and rod-like winding structure with diameter in the range of 20-150 nm, and a few tens of micrometers in length with a high degree of size homogeneity. The FT-IR spectra show the obtained bands at 480 and 900 cm(-1) are corresponding to the Mo-S bond and the S-S bond. The TG-DTA curves confirm the thermal stability of the prepared samples. It is observed that the band gap energy for the MoS2 nanorods is lower than for the nanospherical structure MoS2, which leads to achieve high electron and hole recombination rate.ope

    Exfoliated MoS2 in Water without Additives

    No full text
    Many solution processing methods of exfoliation of layered materials have been studied during the last few years; most of them are based on organic solvents or rely on surfactants andother funtionalization agents. Pure water should be an ideal solvent, however, it is generallybelieved, based on solubility theories that stable dispersions of water could not be achievedand systematic studies are lacking. Here we describe the use of water as a solvent and thestabilization process involved therein. We introduce an exfoliation method of molybdenumdisulfide (MoS2) in pure water at high concentration (i.e., 0.14±0.01 g L−1). This was achieved by thinning the bulk MoS2by mechanical exfoliation between sand papers and dis-persing it by liquid exfoliation through probe sonication in water. We observed thin MoS2nanosheets in water characterized by TEM, AFM and SEM images. The dimensions of thenanosheets were around 200 nm, the same range obtained in organic solvents. Electropho-retic mobility measurements indicated that electrical charges may be responsible for the sta-bilization of the dispersions. A probability decay equation was proposed to compare thestability of these dispersions with the ones reported in the literature. Water can be used as asolvent to disperse nanosheets and although the stability of the dispersions may not be ashigh as in organic solvents, the present method could be employed for a number of applications where the dispersions can be produced on site and organic solvents are not desirable.Paper Solar Cell
    corecore