697 research outputs found

    On the sound of snapping shrimp

    Get PDF
    Snapping shrimp produce a snapping sound by an extremely rapid closure of their snapper claw. Source levels reported for Alpheus heterochaelis are as high as 220 dB (peak-to-peak) re. 1 µPa at 1 m distance. The loud snap has been attributed to the mechanical contact made when the snapper claw contracts. The recent ultra-high-speed imaging of the snapper claw closure at 40500 frames per second has revealed that the sound is, in fact, generated by the collapse of a cavitation bubble formed in a fast flowing water jet forced out from between the claws during claw closure. A temporal analysis of the sound recordings and the high-speed images shows that no sound is associated with the claw closure, while a very prominent signal is observed during the collapse of the cavitation bubble. Gallery of Fluid Motion\ud Award-winning entry 200

    De staat van het klimaat 2010 : actueel onderzoek en beleid nader verklaard

    Get PDF
    Staatssecretaris Atsma van Milieu ontving 5 april het eerste exemplaar van de ‘Staat van het Klimaat 2010’. De publicatie geeft een overzicht van relevante ontwikkelingen op het gebied van klimaat in het afgelopen jaar. Het is een uitgave van de onderzoeksinstellingen die samenwerken binnen het Platform Communication on Climate Change (PCCC)

    Anisotropic valence-->core x-ray fluorescence from a [Rh(en)3][Mn(N)(CN)5]·H2O single crystal: Experimental results and density functional calculations

    Get PDF
    High resolution x-ray fluorescence spectra have been recorded for emission in different directions from a single crystal of the compound [Rh(en)3][Mn(N)(CN)5]·H2O. The spectra are interpreted by comparison with density functional theory (DFT) electronic structure calculations. The Kbeta[double-prime] line, which is strongly polarized along the Mn–N axis, can be viewed as an N(2s)-->Mn(1s) transition, and the angular dependence is understood within the dipole approximation. The so-called Kbeta2,5 region has numerous contributions but is dominated by Mn(4p) and C(2s)-->Mn(1s) transitions. Transition energy splittings are found in agreement with those of calculated occupied molecular orbitals to within 1 eV. Computed relative transition probabilities reproduce experimentally observed trends

    Ion distribution and ablation depth measurements of a fs-ps laser-irradiated solid tin target

    Get PDF
    The ablation of solid tin surfaces by an 800-nanometer-wavelength laser is studied for a pulse length range from 500 fs to 4.5 ps and a fluence range spanning 0.9 to 22 J/cm^2. The ablation depth and volume are obtained employing a high-numerical-aperture optical microscope, while the ion yield and energy distributions are obtained from a set of Faraday cups set up under various angles. We found a slight increase of the ion yield for an increasing pulse length, while the ablation depth is slightly decreasing. The ablation volume remained constant as a function of pulse length. The ablation depth follows a two-region logarithmic dependence on the fluence, in agreement with the available literature and theory. In the examined fluence range, the ion yield angular distribution is sharply peaked along the target normal at low fluences but rapidly broadens with increasing fluence. The total ionization fraction increases monotonically with fluence to a 5-6% maximum, which is substantially lower than the typical ionization fractions obtained with nanosecond-pulse ablation. The angular distribution of the ions does not depend on the laser pulse length within the measurement uncertainty. These results are of particular interest for the possible utilization of fs-ps laser systems in plasma sources of extreme ultraviolet light for nanolithography.Comment: 8 pages, 7 figure

    Cleaning lateral morphological features of the root canal:the role of streaming and cavitation

    Get PDF
    AIM: To investigate the effects of ultrasonic activation file type, lateral canal location and irrigant on the removal of a biofilm-mimicking hydrogel from a fabricated lateral canal. Additionally, the amount of cavitation and streaming was quantified for these parameters. METHODOLOGY: An intracanal sonochemical dosimetry method was used to quantify the cavitation generated by an IrriSafe 25 mm length, size 25 file inside a root canal model filled with filtered degassed/saturated water or three different concentrations of NaOCl. Removal of a hydrogel, demonstrated previously to be an appropriate biofilm mimic, was recorded to measure the lateral canal cleaning rate from two different instruments (IrriSafe 25 mm length, size 25 and K 21 mm length, size 15) activated with a P5 Suprasson (Satelec) at power P8.5 in degassed/saturated water or NaOCl. Removal rates were compared for significant differences using nonparametric Kruskal-Wallis and/or Mann-Whitney U-tests. Streaming was measured using high-speed particle imaging velocimetry at 250 kfps, analysing both the oscillatory and steady flow inside the lateral canals. RESULTS: There was no significant difference in amount of cavitation between tap water and oversaturated water (P = 0.538), although more cavitation was observed than in degassed water. The highest cavitation signal was generated with NaOCl solutions (1.0%, 4.5%, 9.0%) (P < 0.007) and increased with concentration (P < 0.014). The IrriSafe file outperformed significantly the K-file in removing hydrogel (P < 0.05). Up to 64% of the total hydrogel volume was removed after 20 s. The IrriSafe file typically outperformed the K-file in generating streaming. The oscillatory velocities were higher inside the lateral canal 3 mm compared to 6 mm from WL and were higher for NaOCl than for saturated water, which in turn was higher than for degassed water. CONCLUSIONS: Measurements of cavitation and acoustic streaming have provided insight into their contribution to cleaning. Significant differences in cleaning, cavitation and streaming were found depending on the file type and size, lateral canal location and irrigant used. In general, the IrriSafe file outperformed the K-file, and NaOCl performed better than the other irrigants tested. The cavitation and streaming measurements revealed that both contributed to hydrogel removal and both play a significant role in root canal cleaning

    Focal areas of increased lipid concentration on the coating of microbubbles during short tone-burst ultrasound insonification

    Get PDF
    Acoustic behavior of lipid-coated microbubbles has been widely studied, which has led to several numerical microbubble dynamics models that incorporate lipid coating behavior, such as buckling and rupture. In this study we investigated the relationship between micro-bubble acoustic and lipid coating behavior on a nanosecond scale by using fluorescently labeled lipids. It is hypothesized that a local increased concentration of lipids, appearing as a focal area of increased fluorescence intensity (hot spot) in the fluorescence image, is related to buckling and folding of the lipid layer thereby highly influencing the microbubble acoustic behavior. To test this hypothesis, the lipid microbubble coating was fluorescently labeled. The vibration of the microbubble (n= 177; 2.3-10.3 μm in diameter) upon insonification at an ultrasound frequency of 0.5 or 1 MHz at 25 or 50 kPa acoustic pressure was recorded with the UPMC Cam, an ultra-high-speed fluorescence camera, operated at ∼4-5 million frames per second. During short tone-burst excitation, hot spots on the microbubble coating occurred at relative vibration amplitudes > 0.3 irrespective of frequency and acoustic pressure. Around resonance, the majority of the microbubbles formed hot spots. When the microbubble also deflated acoustically, hot spot formation was likely irreversible. Although compression-only behavior (defined as substantially more microbubble compression than expansion) and subharmonic responses were observed in those microbubbles that formed hot spots, both phenomena were also found in microbubbles that did not form hot spots during insonification. In conclusion, this study reveals hot spot formation of the lipid monolayer in the microbubble's compression phase. However, our experimental results show that there is no direct relationship between hot spot formation of the lipid coating and microbubble acoustic behaviors such as compression-only and the generation of a subharmonic response. Hence, our hypothesis that hot spots are related to acoustic buckling could not be verified

    Humoral immune response and delayed type hypersensitivity to influenza vaccine in patients with diabetes mellitus

    Get PDF
    The antibody response and delayed type hypersensitivity reaction to commercially available trivalent influenza vaccine in 159 patients with diabetes mellitus was compared with response and reaction in 28 healthy volunteers. A correction for prevaccination titres was made. No differences were found between diabetic patients and control subjects with respect to antibody response to the three vaccine strains as measured by the difference between geometric mean titres of post- and prevaccination sera. In Type 1 (insulin-dependent) diabetic patients the incidence of non-responders to two vaccine components was significantly increased (p less than 0.05). The delayed type hypersensitivity reaction to influenza antigen was significantly decreased in patients with high concentrations of glycosylated haemoglobin (p less than 0.01). These findings suggest a role for impaired immune response in the increased influenza morbidity and mortality in patients with diabetes mellitus. Implications for therapy and vaccination strategy are discussed

    Distinct factors determine the kinetics of disease relapse in adults transplanted for acute myeloid leukaemia

    Get PDF
    Background: Disease recurrence remains the major cause of death in adults with acute myeloid leukaemia (AML) treated using either intensive chemotherapy (IC) or allogenic stem cell transplantation (allo-SCT). Aims: The timely delivery of maintenance drug or cellular therapies represent emerging strategies with the potential to reduce relapse after both treatment modalities, but whilst the determinants of overall relapse risk have been extensively characterized the factors determining the timing of disease recurrence have not been characterized. Materials and Methods: We have therefore examined, using a series of sequential landmark analyses, relapse kinetics in a cohort of 2028 patients who received an allo-SCT for AML in CR1 and separately 570 patients treated with IC alone. Results: In the first 3 months after allo-SCT, the factors associated with an increased risk of relapse included the presence of the FLT3-ITD (P < 0.001), patient age (P = 0.012), time interval from CR1 to transplant (P < 0.001) and donor type (P = 0.03). Relapse from 3 to 6 months was associated with a higher white cell count at diagnosis (P = 0.001), adverse-risk cytogenetics (P < 0.001), presence of FLT3-ITD mutation (P < 0.001) and time interval to achieve first complete remission (P = 0.013). Later relapse was associated with adverse cytogenetics, mutated NPM1, absence of chronic graft-versus-host disease (GVHD) and the use of in vivo T-cell depletion. In patients treated with IC alone, the factors associated with relapse in the first 3 months were adverse-risk cytogenetics (P < 0.001) and FLT3-ITD status (P = 0.001). The factors predicting later relapse were the time interval from diagnosis to CR1 (P = 0.22) and time interval from CR1 to IC (P = 0.012). Discussion and Conclusion: Taken together, these data provide novel insights into the biology of disease recurrence after both allo-SCT and IC and have the potential to inform the design of novel maintenance strategies in both clinical settings

    The Supera Interwoven Nitinol Stent as a Flow Diverting Device in Popliteal Aneurysms

    Get PDF
    PURPOSE: The feasibility of using a compressed interwoven Supera stent as a flow diverting device for popliteal aneurysms was recently demonstrated in patients. It is unclear, however, what the optimal flow diverting strategy is, because of the fusiform shape of popliteal aneurysms and their exposure to triphasic flow. To assess this flow diverting strategy for popliteal aneurysms, flow profiles and thrombus formation likelihood were investigated in popliteal aneurysm models. MATERIALS AND METHODS: Six popliteal aneurysm models were created and integrated into a pulsatile flow set-up. These models covered a bent and a straight anatomy in three configurations: control, single-lined and dual-lined Supera stents. Two-dimensional flow velocities were visualized by laser particle image velocimetry. In addition, the efficacy of the stent configurations for promoting aneurysm thrombosis was assessed by simulations of residence time and platelet activation. RESULTS: On average for the two anatomies, the Supera stent led to a twofold reduction of velocities in the aneurysm for single-lined stents, and a fourfold reduction for dual-lined stents. Forward flow was optimally diverted, whereas backward flow was generally deflected into the aneurysm. The dual-lined configuration led to residence times of 15–20 s, compared to 5–15 s for the single stent configurations. Platelet activation potential was not increased by the flow diverting stents. CONCLUSION: A compressed Supera stent was successfully able to divert flow in a popliteal aneurysm phantom. A dual-lined configuration demonstrated superior hemodynamic characteristics compared to its single-lined counterpart. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00270-022-03118-x
    corecore