32 research outputs found

    Crystal Structures of Polymerized Fullerides AC60, A=K, Rb, Cs and Alkali-mediated Interactions

    Full text link
    Starting from a model of rigid interacting C60 polymer chains on an orthorhombic lattice, we study the mutual orientation of the chains and the stability of the crystalline structures Pmnn and I2/m. We take into account i) van der Waals interactions and electric quadrupole interactions between C60 monomers on different chains as well as ii) interactions of the monomers with the surrounding alkali atoms. The direct interactions i) always lead to an antiferrorotational structure Pmnn with alternate orientation of the C60 chains in planes (001). The interactions ii) with the alkalis consist of two parts: translation-rotation (TR) coupling where the orientations of the chains interact with displacements of the alkalis, and quadrupolar electronic polarizability (ep) coupling, where the electric quadrupoles on the C60 monomers interact with induced quadrupoles due to excited electronic d states of the alkalis. Both interactions ii) lead to an effective orientation-orientation interaction between the C60 chains and always favor the ferrorotational structure I2/m where C60 chains have a same orientation. The structures Pmnn for KC60 and I2/m for Rb- and CsC60 are the result of a competition between the direct interaction i) and the alkali-mediated interactions ii). In Rb- and CsC60 the latter are found to be dominant, the preponderant role being played by the quadrupolar electronic polarizability of the alkali ions.Comment: J.Chem.Phys., in press, 14 pages, 3 figures, 8 table

    Theory of rigid-plane phonon modes in layered crystals

    Full text link
    The lattice dynamics of low-frequency rigid-plane modes in metallic (graphene multilayers, GML) and in insulating (hexagonal boron-nitride multilayers, BNML) layered crystals is investigated. The frequencies of shearing and compression (stretching) modes depend on the layer number {\EuScript N} and are presented in the form of fan diagrams. The results for GML and BNML are very similar. In both cases only the interactions (van der Waals and Coulomb) between nearest-neighbor planes are effective, while the interactions between more distant planes are screened. A comparison with recent Raman scattering results on low-frequency shear modes in GML [Tan {\it et al.}, arXiv:1106.1146v1 (2011)] is made. Relations with the low-lying rigid-plane phonon dispersions in the bulk materials are established. Master curves which connect the fan diagram frequencies for any given {\EuScript N} are derived. Static and dynamic thermal correlation functions for rigid-layer shear and compression modes are calculated. The results might be of use for the interpretation of friction force experiments on multilayer crystals

    Nanotube field of C60 molecules in carbon nanotubes: atomistic versus continuous tube approach

    Full text link
    We calculate the van der Waals energy of a C60 molecule when it is encapsulated in a single-walled carbon nanotube with discrete atomistic structure. orientational degrees of freedom and longitudinal displacements of the molecule are taken into account, and several achiral and chiral carbon nanotubes are considered. A comparison with earlier work where the tube was approximated by a continuous cylindrical distribution of carbon atoms is made. We find that such an approximation is valid for high and intermediate tube radii; for low tube radii, minor chirality effects come into play. Three molecular orientational regimes are found when varying the nanotube radius.Comment: 14 pages, 9 figures, accepted for publication in Phys. Rev.

    Strain-induced Evolution of Electronic Band Structures in a Twisted Graphene Bilayer

    Full text link
    Here we study the evolution of local electronic properties of a twisted graphene bilayer induced by a strain and a high curvature. The strain and curvature strongly affect the local band structures of the twisted graphene bilayer; the energy difference of the two low-energy van Hove singularities decreases with increasing the lattice deformations and the states condensed into well-defined pseudo-Landau levels, which mimic the quantization of massive Dirac fermions in a magnetic field of about 100 T, along a graphene wrinkle. The joint effect of strain and out-of-plane distortion in the graphene wrinkle also results in a valley polarization with a significant gap, i.e., the eight-fold degenerate Landau level at the charge neutrality point is splitted into two four-fold degenerate quartets polarized on each layer. These results suggest that strained graphene bilayer could be an ideal platform to realize the high-temperature zero-field quantum valley Hall effect.Comment: 4 figure

    Ordered and disordered packing of coronene molecules in carbon nanotubes

    No full text

    Orientational ordering in solid C60 fullerene-cubane

    No full text
    We study the structure and phase behavior of fullerene-cubane C(60) x C(8)H(8) by Monte Carlo simulation. Using a simple potential model capturing the icosahedral and cubic symmetries of its molecular constituents, we reproduce the experimentally observed phase transition from a cubic to an orthorhombic crystal lattice and the accompanying rotational freezing of the C(60) molecules. We elaborate a scheme to identify the low-temperature orientations of individual molecules and to detect a pattern of orientational ordering similar to the arrangement of C(60) molecules in solid C(60). Our configuration of orientations supports a doubled periodicity along one of the crystal axes

    Monte Carlo Studies of C60 and C70-Peapods

    No full text
    We present results of Monte Carlo simulations of chains of C-60 and chains of C-70 molecules encapsulated in a single-walled carbon nanotube (SWCNT). We observe the changes in the configuration of the fullerene molecules when varying tube radius and temperature. In particular, the evolution of the pair correlation functions reveal a transition from linear harmonic chain behavior to a hard-sphere liquid upon heating, demonstrating the possibility of tuning properties of C-60- and C-70@SWCNT peapods with radius and temperature
    corecore