280 research outputs found
Hi-GAL, the Herschel infrared Galactic Plane Survey: photometric maps and compact source catalogues: First data release for the inner Milky Way: +68° ≥ / ≥ 70°
Aims. We present the first public release of high-quality data products (DR1) from Hi-GAL, the Herschel infrared Galactic Plane Survey. Hi-GAL is the keystone of a suite of continuum Galactic plane surveys from the near-IR to the radio and covers five wavebands at 70, 160, 250, 350 and 500 μm, encompassing the peak of the spectral energy distribution of cold dust for 8 ≲ T ≲ 50 K. This first Hi-GAL data release covers the inner Milky Way in the longitude range 68° ≳ ℓ ≳ −70° in a | b | ≤ 1° latitude strip.
Methods. Photometric maps have been produced with the ROMAGAL pipeline, which optimally capitalizes on the excellent sensitivity and stability of the bolometer arrays of the Herschel PACS and SPIRE photometric cameras. It delivers images of exquisite quality and dynamical range, absolutely calibrated with Planck and IRAS, and recovers extended emission at all wavelengths and all spatial scales, from the point-spread function to the size of an entire 2°× 2° “tile” that is the unit observing block of the survey. The compact source catalogues were generated with the CuTEx algorithm, which was specifically developed to optimise source detection and extraction in the extreme conditions of intense and spatially varying background that are found in the Galactic plane in the thermal infrared.
Results. Hi-GAL DR1 images are cirrus noise limited and reach the 1σ-rms predicted by the Herschel Time Estimators for parallel-mode observations at 60"^(s-1) scanning speed in relatively low cirrus emission regions. Hi-GAL DR1 images will be accessible through a dedicated web-based image cutout service. The DR1 Compact Source Catalogues are delivered as single-band photometric lists containing, in addition to source position, peak, and integrated flux and source sizes, a variety of parameters useful to assess the quality and reliability of the extracted sources. Caveats and hints to help in this assessment are provided. Flux completeness limits in all bands are determined from extensive synthetic source experiments and greatly depend on the specific line of sight along the Galactic plane because the background strongly varies as a function of Galactic longitude. Hi-GAL DR1 catalogues contain 123210, 308509, 280685, 160972, and 85460 compact sources in the five bands
EXPLOITATION
The notion of exploitation is prominent in political discourse and policy debates. It is central in analyses of labour relations, especially focusing on the weakest segments of the labour force including women and children (International Labour Office 2017a, 2017b). It features in controversies on surrogate motherhood (Wood 1995; Wertheimer 1996), and on drug-testing and the price of life-saving drugs, especially in developing countries
Low doses of cisplatin or gemcitabine plus Photofrin/photodynamic therapy: Disjointed cell cycle phase-related activity accounts for synergistic outcome in metastatic non-small cell lung cancer cells (H1299).
We compared the effects of monotherapy (photodynamic therapy or chemotherapy) versus combination therapy (photodynamic therapy plus a specific drug) on the non-small cell lung cancer cell line H1299. Our aim was to evaluate whether the additive/synergistic effects of combination treatment were such that the cytostatic dose could be reduced without affecting treatment efficacy. Photodynamic therapy was done by irradiating Photofrin-preloaded H1299 p53/p16-null cells with a halogen lamp equipped with a bandpass filter. The cytotoxic drugs used were cis-diammine-dichloroplatinum [II] (CDDP or cisplatin) and 2',2'-difluoro-2'-deoxycytidine (gemcitabine). Various treatment combinations yielded therapeutic effects (trypan blue dye exclusion test) ranging from additive to clearly synergistic, the most effective being a combination of photodynamic therapy and CDDP. To gain insight into the cellular response mechanisms underlying favorable outcomes, we analyzed the H1299 cell cycle profiles and the expression patterns of several key proteins after monotherapy. In our conditions, we found that photodynamic therapy with Photofrin targeted G0-G1 cells, thereby causing cells to accumulate in S phase. In contrast, low-dose CDDP killed cells in S phase, thereby causing an accumulation of G0-G1 cells (and increased p21 expression). Like photodynamic therapy, low-dose gemcitabine targeted G0-G1 cells, which caused a massive accumulation of cells in S phase (and increased cyclin A expression). Although we observed therapeutic reinforcement with both drugs and photodynamic therapy, reinforcement was more pronounced when the drug (CDDP) and photodynamic therapy exert disjointed phase-related cytotoxic activity. Thus, if photodynamic therapy is appropriately tuned, the dose of the cytostatic drug can be reduced without compromising the therapeutic response
Asymptotic integral kernel for ensembles of random normal matrices with radial potentials
We use the steepest descents method to study the integral kernel of a family of normal random matrix ensembles with eigenvalue distribution P_{N}(z_{1},...,z_{N}) = Z_{N}^{-1} e^{-NSigma_{i=1}^{N}V_{alpha}(z_{i})} Pi_{1leqi<jleqN}|z_{i}-z_{j}|^{2} where V_{alpha}(z)=|z|^{alpha}, z in C and alpha in ]0,infty[. Asymptotic analysis with error estimates are obtained. A corollary of this expansion is a scaling limit for the n-point function in terms of the integral kernel for the classical Segal--Bargmann space
Reactions of Oxygen Atoms with Van der Waals Complexes: The Effect of Complex Formation on the Internal Energy Distribution in the Products
Reactions of atomic oxygen with complexes containing HCl are investigated and the OH product state distributions are compared to those observed for the corresponding reactions of HCl monomers. In previous studies of reactions of O(3P) with HCl and hydrocarbon complexes, rotationally colder OH product state distributions were observed, when compared to the corresponding reactions of monomers. In contrast, we find that reactions of O(1D) with HCl clusters yield OH rotational distributions that are unaffected by the incorporation of HCl into a van der Waals complex. Quasiclassical trajectories are run on collisions of oxygen with HCl and Ar⋯HCl at 1 eV collision energies to investigate the differences in the dynamics of the O(1D) and O(3P) reactions. It is found that when the van der Waals complex is longer lived than the collision complex, rotational and vibrational cooling are observed. In contrast, when the dissociation of the van der Waals complex is prompt, compared to the collision complex lifetime, the effects of complex formation on the internal energy of the OH product become negligible
On bulk singularities in the random normal matrix model
We extend the method of rescaled Ward identities of Ameur-Kang-Makarov to
study the distribution of eigenvalues close to a bulk singularity, i.e. a point
in the interior of the droplet where the density of the classical equilibrium
measure vanishes. We prove results to the effect that a certain "dominant part"
of the Taylor expansion determines the microscopic properties near a bulk
singularity. A description of the distribution is given in terms of a special
entire function, which depends on the nature of the singularity (a
Mittag-Leffler function in the case of a rotationally symmetric singularity).Comment: This version clarifies on the proof of Theorem
Potential of the Oxidized Form of the Oleuropein Aglycon to Monitor the Oil Quality Evolution of Commercial Extra-Virgin Olive Oils
The quality of commercially available extra-virgin olive oils (VOOs) of different chemical compositions was evaluated as a function of storage (12 months), simulating market storage conditions, to find reliable and early markers of the virgin olive oil (VOOs) quality status in the market. By applying a D-optimal design using the Most Descriptive Compound (MDC) algorithm, 20 virgin olive oils were selected. The initial concentrations of oleic acid, hydrophilic phenols, and a-tocopherol in the 20 VOOs ranged from 58.2 to 80.5%, 186.7 to 1003.2 mg/kg, and 170.7-300.6 mg/kg, respectively. K-270, increment K, (E, E)-2.4-decadienal and (E)-2-decenal, and the oxidative form of the oleuropein aglycon (3,4-DHPEA-EA-OX) reflected the VOO quality status well, with 3,4-DHPEA-EA-OX being the most relevant and quick index for simple monitoring of the "extra-virgin" commercial shelf-life category. Its HPLC-DAD evaluation is easy because of the different wavelength absorbances of the oxidized and non-oxidized form (3,4-DHPEA-EA), respectively, at 347 and 278 nm
Sensory and chemical profile of a phenolic extract from olive mill waste waters in plant-base food with varied macro-composition
Phenols from olive mill waste water (OMWW) represent valuable functional ingredients. The negative impact on sensory quality limits their use in functional food formulations. Chemical interactions phenols/biopolymers and their consequences on bioactivity in plant-base foods have been widely investigated, but no studies to date have explored the variation of bitterness, astringency and pungency induced by OMWW phenols as a function of the food composition. The aim of the paper was to profile the sensory and chemical properties of phenols from OMWW in plant-base foods varied in their macro-composition. Four phenol concentrations were selected (0.44, 1.00, 2.25, 5.06 g/kg) to induce significant variations of bitterness, sourness, astringency and pungency in three plant-base food: proteins/neutral pH \u2013 bean pur\ue9e (BP), starch/neutral pH \u2013 potato pur\ue9e (PP), fiber/low pH \u2013 tomato juice (TJ). The macro-composition affected the amount of the phenols recovered from functionalized food. The highest recovery was from TJ and the lowest from BP. Two groups of 29 and 27 subjects, trained to general Labelled Magnitude Scale and target sensations, participated in the evaluation of psychophysical curves of OMWW phenols and of functionalized plant-base foods, respectively. Target sensations were affected by the food macro-composition. Bitterness increased with phenol concentration in all foods. Astringency and sourness slightly increased with concentration, reaching the weak-moderate intensity at the highest phenol concentration in PP and TJ only. Pungency was suppressed in BP and perceived at weak-moderate intensity in PP and TJ sample at the highest phenol concentration. Proteins/neutral pH plant-food (BP) resulted more appropriate to counteract the impact of added phenol on negative sensory properties thus allowing to optimize the balance between health and sensory properties
Sensory and chemical profile of a phenolic extract from olive mill waste waters in plant-base food with varied macro-composition
Phenols from olive mill waste water (OMWW) represent valuable functional ingredients. The negative impact on sensory quality limits their use in functional food formulations. Chemical interactions phenols/biopolymers and their consequences on bioactivity in plant-base foods have been widely investigated, but no studies to date have explored the variation of bitterness, astringency and pungency induced by OMWW phenols as a function of the food composition. The aim of the paper was to profile the sensory and chemical properties of phenols from OMWW in plant-base foods varied in their macro-composition. Four phenol concentrations were selected (0.44, 1.00, 2.25, 5.06 g/kg) to induce significant variations of bitterness, sourness, astringency and pungency in three plant-base food: proteins/neutral pH \u2013 bean pur\ue9e (BP), starch/neutral pH \u2013 potato pur\ue9e (PP), fiber/low pH \u2013 tomato juice (TJ). The macro-composition affected the amount of the phenols recovered from functionalized food. The highest recovery was from TJ and the lowest from BP. Two groups of 29 and 27 subjects, trained to general Labelled Magnitude Scale and target sensations, participated in the evaluation of psychophysical curves of OMWW phenols and of functionalized plant-base foods, respectively. Target sensations were affected by the food macro-composition. Bitterness increased with phenol concentration in all foods. Astringency and sourness slightly increased with concentration, reaching the weak-moderate intensity at the highest phenol concentration in PP and TJ only. Pungency was suppressed in BP and perceived at weak-moderate intensity in PP and TJ sample at the highest phenol concentration. Proteins/neutral pH plant-food (BP) resulted more appropriate to counteract the impact of added phenol on negative sensory properties thus allowing to optimize the balance between health and sensory properties
- …