11,259 research outputs found

    Natural History of Acute Subdural Hematoma

    Get PDF
    Although guidelines for surgical decision-making in patients with acute subdural hematomas (ASDHs) are widely available, the evidence supporting these guidelines is weak, and management of these patients must often be individualized. Smaller ASDHs in patients in good neurologic condition usually can be successfully managed without surgery. Large ASDHs with minimal mass effect in patients with minimal symptoms also may be considered for nonoperative management. The literature is divided about the effects of anticoagulant and antiplatelet medications on rapid growth of ASDHs and on their likelihood of progression to large chronic subdural hematomas, but it is reasonable to reverse the effects of these medications promptly. Close clinical and radiologic follow-up is needed in these patients, both acutely to detect rapid expansion of an ASDH, and subacutely to detect formation of a large subacute or chronic subdural hematoma

    Renormalization Group Flow and Fragmentation in the Self-Gravitating Thermal Gas

    Get PDF
    The self-gravitating thermal gas (non-relativistic particles of mass m at temperature T) is exactly equivalent to a field theory with a single scalar field phi(x) and exponential self-interaction. We build up perturbation theory around a space dependent stationary point phi_0(r) in a finite size domain delta \leq r \leq R ,(delta << R), which is relevant for astrophysical applica- tions (interstellar medium,galaxy distributions).We compute the correlations of the gravitational potential (phi) and of the density and find that they scale; the latter scales as 1/r^2. A rich structure emerges in the two-point correl- tors from the phi fluctuations around phi_0(r). The n-point correlators are explicitly computed to the one-loop level.The relevant effective coupling turns out to be lambda=4 pi G m^2 / (T R). The renormalization group equations (RGE) for the n-point correlator are derived and the RG flow for the effective coupling lambda(tau) [tau = ln(R/delta), explicitly obtained.A novel dependence on tau emerges here.lambda(tau) vanishes each time tau approaches discrete values tau=tau_n = 2 pi n/sqrt7-0, n=0,1,2, ...Such RG infrared stable behavior [lambda(tau) decreasing with increasing tau] is here connected with low density self-similar fractal structures fitting one into another.For scales smaller than the points tau_n, ultraviolet unstable behaviour appears which we connect to Jeans' unstable behaviour, growing density and fragmentation. Remarkably, we get a hierarchy of scales and Jeans lengths following the geometric progression R_n=R_0 e^{2 pi n /sqrt7} = R_0 [10.749087...]^n . A hierarchy of this type is expected for non-spherical geometries,with a rate different from e^{2 n/sqrt7}.Comment: LaTex, 31 pages, 11 .ps figure

    Linear Response Theory and Optical Conductivity of Floquet Topological Insulators

    Full text link
    Motivated by the quest for experimentally accessible dynamical probes of Floquet topological insulators, we formulate the linear response theory of a periodically driven system. We illustrate the applications of this formalism by giving general expressions for optical conductivity of Floquet systems, including its homodyne and heterodyne components and beyond. We obtain the Floquet optical conductivity of specific driven models, including two-dimensional Dirac material such as the surface of a topological insulator, graphene, and the Haldane model irradiated with circularly or linearly polarized laser, as well as semiconductor quantum well driven by an ac potential. We obtain approximate analytical expressions and perform numerically exact calculations of the Floquet optical conductivity in different scenarios of the occupation of the Floquet bands, in particular, the diagonal Floquet distribution and the distribution obtained after a quench. We comment on experimental signatures and detection of Floquet topological phases using optical probes.Comment: 16 pages, 10 figure

    Complex Scalar DM in a B-L Model

    Full text link
    In this work, we implement a complex scalar Dark Matter (DM) candidate in a U(1)B−LU(1)_{B-L} gauge extension of the Standard Model. The model contains three right handed neutrinos with different quantum numbers and a rich scalar sector, with extra doublets and singlets. In principle, these extra scalars can have VEVs (VΦV_{\Phi} and VϕV_{\phi} for the extra doublets and singlets, respectively) belonging to different energy scales. In the context of ζ≡VΦVϕ≪1\zeta\equiv\frac{V_{\Phi}}{V_{\phi}}\ll1, which allows to obtain naturally light active neutrino masses and mixing compatible with neutrino experiments, the DM candidate arises by imposing a Z2Z_{2} symmetry on a given complex singlet, ϕ2\phi_{2}, in order to make it stable. After doing a study of the scalar potential and the gauge sector, we obtain all the DM dominant processes concerning the relic abundance and direct detection. Then, for a representative set of parameters, we found that a complex DM with mass around 200200 GeV, for example, is compatible with the current experimental constraints without resorting to resonances. However, additional compatible solutions with heavier masses can be found in vicinities of resonances. Finally, we address the issue of having a light CP-odd scalar in the model showing that it is safe concerning the Higgs and the ZμZ_{\mu} boson invisible decay widths, and also the energy loss in stars astrophysical constraints.Comment: 20 pages, 3 figure

    Rigidly Rotating Strings in Stationary Spacetimes

    Full text link
    In this paper we study the motion of a rigidly rotating Nambu-Goto test string in a stationary axisymmetric background spacetime. As special examples we consider the rigid rotation of strings in flat spacetime, where explicit analytic solutions can be obtained, and in the Kerr spacetime where we find an interesting new family of test string solutions. We present a detailed classification of these solutions in the Kerr background.Comment: 19 pages, Latex, 9 figures, revised for publication in Classical and Quantum Gravit

    Magnetic polarons in Ca_(1-x)Y_xMnO_3

    Full text link
    Experimental evidence show that in the magnetoresistive manganite Ca_(1-x) Y_xMnO_3, ferromagnetic (FM) polarons arises in an antiferromagnetic (AF) background, as a result of the doping with Yttrium. This hypothesis is supported in this work by classical Monte Carlo (MC) calculations performed on a model where FM Double Exchange (DE) and AF Superexhange (SE) compite.Comment: 3 pages, 3 figs, submitted to LAW3M conferenc

    Vacuum stability conditions of the economical 3-3-1 model from copositivity

    Get PDF
    By applying copositivity criterion to the scalar potential of the economical 3−3−13-3-1 model, we derive necessary and sufficient bounded-from-below conditions at tree level. Although these are a large number of intricate inequalities for the dimensionless parameters of the scalar potential, we present general enlightening relations in this work. Additionally, we use constraints coming from the minimization of the scalar potential by means of the orbit space method, the positivity of the squared masses of the extra scalars, the Higgs boson mass, the Z′Z' gauge boson mass and its mixing angle with the SM ZZ boson in order to further restrict the parameter space of this model.Comment: 22 pages, 7 figures, added text and references. Matches published versio
    • …
    corecore