15 research outputs found

    Study of Coupled Oscillators with Local and Global Nonlinear Potentials

    Get PDF
    AbstractMulti-scale dynamics of a linear oscillator coupled to a nonlinear energy sink with local and global potential is studied. Detection of the slow invariant manifold gives information on the system behavior, while equilibrium and singular points provide finer predictions, which are in agreement with numerical results

    Performance comparison between a nonlinear energy sink and a linear tuned vibration absorber for broadband control

    Full text link
    The performance of a linear tuned vibration absorber (LTVA) and a nonlinear energy sink (NES) for the vibration mitigation of an uncertain linear primary system is investigated. An analytic tuning rule for the LTVA when the primary system contains uncertainty is derived. The behavior of the linear system coupled to the NES is analyzed theoretically. A tuning methodology for the NES in the deterministic as well as for the uncertain case is presented. © The Society for Experimental Mechanics, Inc. 2016

    Passive suppression of helicopter ground resonance using nonlinear energy sinks attached on the helicopter blades

    No full text
    International audienceThis paper investigates the passive control of a rotor instability named helicopter Ground Resonance (GR). The passive device consists of a set of essential cubic nonlinear absorbers named Nonlinear Energy Sinks (NES) each of them positioned on a blade. A dynamic model reproducing helicopter GR instability is presented and transformed to a time-invariant nonlinear system using a multi-blade coordinate transformation based on Fourier transform mapping the dynamic state variables into a non-rotating reference frame. Combining complexification, slow/fast partition of the dynamics and averaging procedure, a reduced model is obtained allowed us to use the so-called geometric singular perturbation analysis to characterize the steady state response regimes. As in the case of a NES attached to the fuselage, it is shown that under suitable conditions, GR instability can be completely suppressed, partially suppressed through periodic response or strongly modulated response. Relevant analytical results are compared, for validation purposes, to direct integration of the reference and reduced models
    corecore