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Abstract

Multi-scale dynamics of a linear oscillator coupled to a nonlinear energy sink with local and global potential is studied. Detection

of the slow invariant manifold gives information on the system behavior, while equilibrium and singular points provide finer

predictions, which are in agreement with numerical results.

Keywords: Nonlinear energy sink, multi-scale dynamics, energy exchanges, local potential

1. Introduction

Passive control of structures can be carried out via endowing internal capabilities of structural members, e.g. hys-

teresis responses of semi-rigid joints during cyclic or seismic loads1, and/or by coupling other oscillators to them2.

Coupled passive controller oscillators can be divided in two general categories: they can be linear, e.g. Frahm de-

vices3, or nonlinear such as nonlinear energy sink (NES) systems4,5. There are some advantages in using NES systems

over corresponding linear controllers: they are very light; they do not modify frequencies of main structures; they are

valid and can trigger the energy of main systems for quite large frequency widths. The control process by NES devices

can be carried out by trapping both coupled oscillators into periodic regimes and/or by performing strongly modu-

lated responses that are accompanied by persisting back and forth bifurcations of systems6,7. Nonlinear potential of

the NES can be cubic8,9 or nonsmooth10,11. The nonsmooth potential of the NES is recognized by piece-wise lin-

ear12,13,14 or vibro-impact15,16 systems. Most of researches on passive control of structures by NES devices endow the

global potential of the NES which performs direct interactions with the main structure. In this study we are interested

to detect time multi-scale energy exchanges between a main structure and a NES with local and global potentials.

The local potential of the NES which depends only on the behavior of the NES, is realized intentionally to see its

effects on energy exchanges of both oscillators at different time scales. A step by step original analytical treatments

are developed for preparing necessary design tools for tuning parameters of the NES with local and global potentials
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for the aim of passive control and/or vibratory energy harvesting of main structural systems. This paper is organized

as it follows: model description, change of variables and scaled parameters are given in Sect. 2. In Sect. 3, analytical

treatment of the equations at fast and slow time scales is carried out. These predictions are compared to numerical

results in Sect. 4. Finally, the paper is concluded in Sect. 5.

2. Mathematical description of the considered system

Let us consider the model described in Eq. (1). Displacements of the main linear system and the NES are described

by y and x, respectively, and ε is a small parameter (0 < ε � 1) standing for the mass ratio of the NES and the main

oscillator. The principal structure has the damping a and the angular frequencyω0. It is subjected to the external force

f (t). The NES has the damping c and possesses two odd potential functions: the global one consists of linear and

nonlinear parts (ωc and W(z), respectively) while the local one, g̃(z), is purely nonlinear.

ÿ + aẏ + ω2
0
y + c(ẏ − ẋ) + ω2

c(y − x) +W(y − x) = f (t)

ε ẍ − c(ẏ − ẋ) − ω2
c(y − x) −W(y − x) + g̃(x) = 0

(1)

New variables of the system are given by:

v =
y + εx

1 + ε
, w = x − y (2)

Let us now introduce complex variables17:

ψeiωt = v̇ + iωv , ϕeiωt = ẇ + iωw (3)

Multiple time scales τ j = ε
jt, j = 0, 1, . . . are then introduced. Finally, following assumptions about scales of

parameters are carried out so that we can study the system behavior around 1:1:1 resonance at fast and slow time

scales:

f (t) = ε f 0 sin(ωt) , ω = ω0(1 + σε) , c = εd , a = εa0 , ω2
c = εΩ

2 , W(z) = εW0(z) , g̃(z) = εg̃0(z) (4)

Local potential g̃(z) and global potential W(z) are assumed to be cubic:

W0(z) = A0z3 , g̃0(z) = B0z3 (5)

3. Analytical treatment

We follow the method developed in references12,18 for instance.

Assuming that ψ and ϕ do not depend on τ0 (to be verified or assumed by asymptotic state τ0 → +∞), we obtain:

ψ̇ +

(
iω0(1 + σε)

2
+

a0ε

2(1 + ε)
−

iω0

2(1 + ε)(1 + σε)

)
ψ −

ε

2(1 + ε)2

(
a0ε −

iω0

1 + σε

)
ϕ +

ε

1 + ε
Fg̃0 = −

ε

1 + ε

i f 0

2

ϕ̇ +

(
iω0(1 + σε)

2
+

a0ε
2

2(1 + ε)
−

iω0ε

2(1 + ε)(1 + σε)
+

d(1 + ε)

2
−

iΩ2(1 + ε)

2ω0(1 + σε)

)
ϕ−(

a0ε

2
−

iω0

2(1 + σε)

)
ψ + (1 + ε)FW0 + Fg̃0 = ε

i f 0

2

(6)

with

FW0 = −
3iA0

8ω3
0

|ϕ|2ϕ = −iA|ϕ|2ϕ

Fg̃0 = −
3iB0

8ω3
0

|ψ + ϕ|2(ψ + ϕ) = −iB|ψ + ϕ|2(ψ + ϕ)

(7)
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3.1. Study at ε0 order

At fast time scale, the system (6) reads:

D0ψ = 0⇒ ψ = ψ(τ1, τ2, ...)

D0ϕ +

(
iω0

2
+

d

2
−

iΩ2

2ω0

)
ϕ +

iω0

2
ψ + FW0 + Fg̃0 = 0

(8)

Considering asymptotic behavior (τ0 → +∞), we obtain equilibrium relation defining slow invariant manifold (SIM)

of the system: (
iω0

2
+

d

2
−

iΩ2

2ω0

)
φ +

iω0

2
ψ − iA|φ|2φ − iB|ψ + φ|2(ψ + φ) = 0 (9)

Eq. (9) is solved by using following equations:

χ = ψ + φ⇔ ρeiθ = N1eiδ1 + N2eiδ2

iω0

2
χ +

(
d −

iΩ2

ω0

)
φ

2
− iA|φ|2φ − iB|χ|2χ = 0

(
ω0

2
− Bρ2

)2

ρ2 −

⎛⎜⎜⎜⎜⎜⎝d2

4
+

(
Ω2

2ω0

+AN2
2

)2
⎞⎟⎟⎟⎟⎟⎠ N2

2
= 0

N2
1
= ρ2 + N2

2
− 2ρN2 cos(θ − δ2)

(10)

One can notice that the third equation is a polynomial of degree three for ρ2, that leads to the existence of three

possible values of ρ (and N1 consequently) for a given value of N2. Thus, the SIM presents three branches.

3.2. Study at ε1 order

Let us consider the first equation of (6) at ε1 order:

D1ψ +

(
iω0

(
σ +

1

2

)
+

a0

2

)
ψ +

iω0

2
ϕ − iB|ψ + ϕ|2(ψ + ϕ) = −

i f 0

2
(11)

Equilibrium points around SIM are obtained by solving:

(
iω0

(
σ +

1

2

)
+

a0

2

)
ψ +

iω0

2
φ − iB|ψ + φ|2(ψ + φ) = −

i f 0

2
(12)

After cumbersome algebra, one can reach:

H1 = 0

H2 = 0
(13)

whereH1 andH2 are real and imaginary parts of an equation obtained from Eq. (9) and Eq. (12). The points verifying

(13) are equilibrium points of the system on its SIM.

Singular points suggest existence of strongly modulated response (SMR)6 of the system, which is subjected in this

case to persistent bifurcations. They occur along the SIM when implicit function theorem is not valid, i.e.:

F1 = 0

F2 = 0

det(D) = 0

H1 = 0

H2 = 0

(14)
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where F1 and F2 correspond to real and imaginary parts of the SIM and matrix D to:

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂F1

∂N2

∂F1

∂Δ

∂F2

∂N2

∂F2

∂Δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with Δ = δ1 − δ2 (15)

4. Numerical results

Analytical predictions are compared in this section with numerical results obtained via direct numerical integration

of system (1) performed by the function ode45 of Matlab. Simulations were run for following parameters: ε = 0.001,

ω0 = 1, Ω = 0.1, d = 0.1, a0 = 0.1, A = 1.5, B = 0.5, σ = 1, and f 0 = 0.34. Assumed initial conditions are

(y(0), ẏ(0), x(0), ẋ(0)) = (1.2, 0, 0, 0).

Fig. 1 depicts the SIM of the system, which presents as predicted three branches (named as branches 1, 2 and 3

respectively). Fig. 2 collects position of equilibrium points and singular points of the system. The latter has two

equilibrium points, one stable (no. 1) and the other unstable (no. 3), and one singular point (no. 2), all on branch 1.

One can note that the condition of singularity det(D) = 0 is verified on the local extremums of branch 1. Fig 3 shows

that the SIM is attracting the behavior with SMR. Predicted singular points generate bifurcations and repeated jumps

between local extremums of the SIM with almost periodic regime at low energy levels. Analytical predictions and

effective behaviors are in good agreement.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
2

N
1

1

2

3

Fig. 1. SIM of the system for the following set of parameters: ω0 = 1, Ω = 0.1, d = 0.1,A = 1.5 and B = 0.5

5. Conclusion

Interactions of two coupled oscillators during different scales of time are studied: one of the oscillators which is

supposed to be the main structure and to be controlled is coupled to a nonlinear energy sink with local and global

potentials. The global potential of the latter oscillator has direct interactions with the main oscillator while the local

one depends only the behavior of the nonlinear energy sink. At fast time scale the slow invariant manifold of the

system is detected, which provides the overall view about all possible behaviors during extreme energy exchanges

between two oscillators. Detected equilibrium and singular points of the system at slow time scale provide more

information about existence of all possible regimes. The system can be attracted by periodic regimes (not illustrated

here) due to existence of equilibrium points and/or can present strongly modulated responses due to existence of
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Fig. 2. Position of equilibrium and singular points of the system for the following set of parameters: ε = 0.001, ω0 = 1, Ω = 0.1, d = 0.1, a0 = 0.1,

A = 1.5, B = 0.5, σ = 1, and f 0 = 0.34. The system has two equilibrium points (No. 1 and No. 3) and one singular point (No. 2). (a) Branch 1,

(b) Branch 2 and (c) Branch 3
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Fig. 3. Numerical simulations for the following set of parameters: ε = 0.001, ω0 = 1, Ω = 0.1, d = 0.1, a0 = 0.1, A = 1.5, B = 0.5, σ = 1, and

f 0 = 0.34. (a) N1 vs N2: SIM of the system (dotted red line) and corresponding numerical results in blue. The green line corresponds to the system

behavior during SMR, (b) N2 vs t and (c) N1 vs t. IC stands for “Initial Conditions”
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singular points. All developed techniques can be used to tune all possible periodic and strongly modulated regimes

for having allowable or acceptable energy level(s) of the main structure during mentioned regimes. Tuning of these

regimes leads to the design of nonlinear energy sink devices for passively controlling main structural systems and/or

harvesting their vibratory energies.
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