14 research outputs found

    Evaluation of elastic image fusion at anatomical landmarks

    No full text

    Prediction of brain-computer interface aptitude from individual brain structure

    No full text
    Objective: Brain-computer interface (BCI) provide a non-muscular communication channel for patients with impairments of the motor system. A significant number of BCI users is unable to obtain voluntary control of a BCI-system in proper time. This makes methods that can be used to determine the aptitude of a user necessary. Methods: We hypothesized that integrity and connectivity of involved white matter connections may serve as a predictor of individual BCI-performance. Therefore, we analyzed structural data from anatomical scans and DTI of motor imagery BCI-users differentiated into high and low BCI-aptitude groups based on their overall performance. Results: Using a machine learning classification method we identified discriminating structural brain trait features and correlated the best features with a continuous measure of individual BCI-performance. Prediction of the aptitude group of each participant was possible with near perfect accuracy (one error). Conclusions: Tissue volumetric analysis yielded only poor classification results. In contrast, the structural integrity and myelination quality of deep white matter structures such as the Corpus Callosum, Cingulum, and Superior Fronto-Occipital Fascicle were positively correlated with individual BCI-performance. Significance: This confirms that structural brain traits contribute to individual performance in BCI use

    Adaptation in serious games for upper-limb rehabilitation: an approach to improve training outcomes

    No full text
    International audienceIn this paper, we propose a game adaptation technique that seeks to improve the training outcomes of stroke patients during a therapeutic session. This technique involves the generation of customized game levels, which difficulty is dynamically adjusted to the patients' abilities and performance. Our goal was to evaluate the effect of this adaptation strategy on the training outcomes of post-stroke patients during a therapeutic session. We hypothesized that a dynamic difficulty adaptation strategy would have a more positive effect on the training outcomes of patients than two control strategies, incremental difficulty adaptation and random difficulty adaptation. To test these strategies , we developed three versions of PRehab, a serious game for upper-limb rehabilitation. Seven stroke patients and three therapists participated in the experiment, and played all three versions of the game on a graphics tablet. The results of the experiment show that our dynamic adaptation technique increases movement amplitude during a therapeutic session. This finding may serve as a basis to improve patient recovery
    corecore