1,372 research outputs found

    Two-State Spectral-Free Solutions of Frenkel-Moore Simplex Equation

    Full text link
    Whilst many solutions have been found for the Quantum Yang-Baxter Equation (QYBE), there are fewer known solutions available for its higher dimensional generalizations: Zamolodchikov's tetrahedron equation (ZTE) and Frenkel and Moore's simplex equation (FME). In this paper, we present families of solutions to FME which may help us to understand more about higher dimensional generalization of QYBE.Comment: LaTeX file. Require macros: cite.sty and subeqnarray.sty to process. To appear in J. Phys. A: Math. and Ge

    EFFICIENT MODULAR IMPLEMENTATION OF BRANCH-AND-BOUND ALGORITHMS *

    Full text link
    This paper demonstrates how branch-and-bound algorithms can be modularized to obtain implementation efficiencies. For the manager, this advantage can be used to obtain faster implementation of algorithm results; for the scientist, it allows efficiencies in the construction of similar algorithms with different search and addressing structures for the purpose of testing to find a preferred algorithm. The demonstration in part is achieved by showing how the computer code of a central module of logic can be transported between different algorithms that have the same search strategy. Modularizations of three common searches (the best-bound search and two variants of the last-in-first-out search) with two addressing methods are detailed and contrasted. Using four assembly line balancing algorithms as examples, modularization is demonstrated and the search and addressing methods are contrasted. The application potential of modularization is broad and includes linear programming-based integer programming. Benefits and disadvantages of modularization are discussed. Computational results demonstrate the viability of the method.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75538/1/j.1540-5915.1988.tb00251.x.pd

    Length Effects on the Reliability of Dual-Damascene Cu Interconnects

    Get PDF
    The effects of interconnect length on the reliability of dual-damascene Cu metallization have been investigated. As in Al-based interconnects, the lifetimes of Cu lines increase with decreasing length. However, unlike Al-based interconnects, no critical length exists, below which all Cu lines are âimmortal’. Furthermore, we found multi-modal failure statistics for long lines, suggesting multiple failure mechanisms. Some long Cu interconnect segments have very large lifetimes, whereas in Al segments, lifetimes decrease continuously with increasing line length. It is postulated that the large lifetimes observed in long Cu lines result from liner rupture at the bottom of the vias, which allows continuous flow of Cu between the two bond pads. As a consequence, the average lifetimes of short lines and long lines can be higher than those of lines with intermediate lengths.Singapore-MIT Alliance (SMA

    Investigation of the Fundamental Reliability Unit for Cu Dual-Damascene Metallization

    Get PDF
    An investigation has been carried out to determine the fundamental reliability unit of copper dual-damascene metallization. Electromigration experiments have been carried out on straight via-to-via interconnects in the lower metal (M1) and the upper metal (M2), and in a simple interconnect tree structure consisting of straight via-to-via line with an extra via in the middle of the line (a "dotted-I"). Multiple failure mechanisms have been observed during electromigration testing of via-to-via Cu interconnects. The failure times of the M2 test structures are significantly longer than that of identical M1 structures. It is proposed that this asymmetry is the result of a difference in the location of void formation and growth, which is believed to be related to the ease of electromigration-induced void nucleation and growth at the Cu/Si₃N₄ interface. However, voids were also detected in the vias instead of in the Cu lines for some cases of early failure of the test lines. These early failures are suspected to be related to the integrity and reliability of the Cu via. Different magnitudes and directions of electrical current were applied independently in two segments of the interconnect tree structure. As with Al-based interconnects, the reliability of a segment in this tree strongly depends on the stress conditions of the connected segment. Beyond this, there are important differences in the results obtained under similar test conditions for Al-based and Cu-based interconnect trees. These differences are thought to be associated with variations in the architectural schemes of the two metallizations. The absence of a conducting electromigration-resistant overlayer in Cu technology allows smaller voids to cause failure in Cu compared to Al. Moreover, the Si₃N₄ overlayer that serves as an interlevel diffusion barrier provides sites for easy nucleation of voids and also provides a high diffusivity path for electromigration. The results reported here suggest that while segments are not the fundamental reliability unit for circuit-level reliability assessments for Al or Cu, vias, rather than trees, might be the appropriate fundamental units for the assessment of Cu reliability.Singapore-MIT Alliance (SMA

    Efficient public-key cryptography with bounded leakage and tamper resilience

    Get PDF
    We revisit the question of constructing public-key encryption and signature schemes with security in the presence of bounded leakage and tampering memory attacks. For signatures we obtain the first construction in the standard model; for public-key encryption we obtain the first construction free of pairing (avoiding non-interactive zero-knowledge proofs). Our constructions are based on generic building blocks, and, as we show, also admit efficient instantiations under fairly standard number-theoretic assumptions. The model of bounded tamper resistance was recently put forward by Damgård et al. (Asiacrypt 2013) as an attractive path to achieve security against arbitrary memory tampering attacks without making hardware assumptions (such as the existence of a protected self-destruct or key-update mechanism), the only restriction being on the number of allowed tampering attempts (which is a parameter of the scheme). This allows to circumvent known impossibility results for unrestricted tampering (Gennaro et al., TCC 2010), while still being able to capture realistic tampering attack

    Novel Cβ–Cγ Bond Cleavages of Tryptophan-Containing Peptide Radical Cations

    Get PDF
    In this study, we observed unprecedented cleavages of the Cβ–Cγ bonds of tryptophan residue side chains in a series of hydrogen-deficient tryptophan-containing peptide radical cations (M•+) during low-energy collision-induced dissociation (CID). We used CID experiments and theoretical density functional theory (DFT) calculations to study the mechanism of this bond cleavage, which forms [M – 116]+ ions. The formation of an α-carbon radical intermediate at the tryptophan residue for the subsequent Cβ–Cγ bond cleavage is analogous to that occurring at leucine residues, producing the same product ions; this hypothesis was supported by the identical product ion spectra of [LGGGH – 43]+ and [WGGGH – 116]+, obtained from the CID of [LGGGH]•+ and [WGGGH]•+, respectively. Elimination of the neutral 116-Da radical requires inevitable dehydrogenation of the indole nitrogen atom, leaving the radical centered formally on the indole nitrogen atom ([Ind]•-2), in agreement with the CID data for [WGGGH]•+ and [W1-CH3GGGH]•+; replacing the tryptophan residue with a 1-methyltryptophan residue results in a change of the base peak from that arising from a neutral radical loss (116 Da) to that arising from a molecule loss (131 Da), both originating from Cβ–Cγ bond cleavage. Hydrogen atom transfer or proton transfer to the γ-carbon atom of the tryptophan residue weakens the Cβ–Cγ bond and, therefore, decreases the dissociation energy barrier dramatically

    Rule-based knowledge aggregation for large-scale protein sequence analysis of influenza A viruses

    Get PDF
    Background: The explosive growth of biological data provides opportunities for new statistical and comparative analyses of large information sets, such as alignments comprising tens of thousands of sequences. In such studies, sequence annotations frequently play an essential role, and reliable results depend on metadata quality. However, the semantic heterogeneity and annotation inconsistencies in biological databases greatly increase the complexity of aggregating and cleaning metadata. Manual curation of datasets, traditionally favoured by life scientists, is impractical for studies involving thousands of records. In this study, we investigate quality issues that affect major public databases, and quantify the effectiveness of an automated metadata extraction approach that combines structural and semantic rules. We applied this approach to more than 90,000 influenza A records, to annotate sequences with protein name, virus subtype, isolate, host, geographic origin, and year of isolation. Results: Over 40,000 annotated Influenza A protein sequences were collected by combining information from more than 90,000 documents from NCBI public databases. Metadata values were automatically extracted, aggregated and reconciled from several document fields by applying user-defined structural rules. For each property, values were recovered from ≥88.8% of records, with accuracy exceeding 96% in most cases. Because of semantic heterogeneity, each property required up to six different structural rules to be combined. Significant quality differences between databases were found: GenBank documents yield values more reliably than documents extracted from GenPept. Using a simple set of semantic rules and a reasoner, we reconstructed relationships between sequences from the same isolate, thus identifying 7640 isolates. Validation of isolate metadata against a simple ontology highlighted more than 400 inconsistencies, leading to over 3,000 property value corrections. Conclusion: To overcome the quality issues inherent in public databases, automated knowledge aggregation with embedded intelligence is needed for large-scale analyses. Our results show that user-controlled intuitive approaches, based on combination of simple rules, can reliably automate various curation tasks, reducing the need for manual corrections to approximately 5% of the records. Emerging semantic technologies possess desirable features to support today's knowledge aggregation tasks, with a potential to bring immediate benefits to this field
    corecore