256 research outputs found

    Instabilities for a relativistic electron beam interacting with a laser irradiated plasma

    Full text link
    The effects of a radiation field (RF) on the unstable modes developed in relativistic electron beam--plasma interaction are investigated assuming that ω0>ωp\omega_{0} >\omega_{p}, where ω0\omega_{0} is the frequency of the RF and ωp\omega_{p} is the plasma frequency. These unstable modes are parametrically coupled to each other due to the RF and are a mix between two--stream and parametric instabilities. The dispersion equations are derived by the linearization of the kinetic equations for a beam--plasma system as well as the Maxwell equations. In order to highlight the effect of the radiation field we present a comparison of our analytical and numerical results obtained for nonzero RF with those for vanishing RF. Assuming that the drift velocity ub\mathbf{u}_{b} of the beam is parallel to the wave vector k\mathbf{k} of the excitations two particular transversal and parallel configurations of the polarization vector E0\mathbf{E}_{0} of the RF with respect to k\mathbf{k} are considered in detail. It is shown that in both geometries resonant and nonresonant couplings between different modes are possible. The largest growth rates are expected at the transversal configuration when E0\mathbf{E}_{0} is perpendicular to k\mathbf{k}. In this case it is demonstrated that in general the spectrum of the unstable modes in ω\omega --kk plane is split into two distinct domains with long and short wavelengths, where the unstable modes are mainly sensitive to the beam or the RF parameters, respectively. In parallel configuration, E0k\mathbf{E}_{0} \parallel \mathbf{k}, and at short wavelengths the growth rates of the unstable modes are sensitive to both beam and RF parameters remaining insensitive to the RF at long wavelengths.Comment: 23 pages, 5 figure

    Radiative Efficiency of Collisionless Accretion

    Full text link
    Radiative efficiency of a slowly accreting black hole is estimated using a two-temperature model of accretion. The radiative efficiency depends on the magnetic field strength near the Schwarzschild radius. For weak magnetic fields (magnetic energy=equipartition/1000), the low efficiency 0.0001 assumed in some theoretical models might be achieved. For stronger fields, a significant fraction of viscous heat is dissipated by electrons and radiated away resulting in a larger efficiency. At equipartition magnetic fields, we estimate efficiency = of order 10%.Comment: 12 pages, Latex, Submitted to Ap

    2D continuous spectrum of shear Alfven waves in the presence of a magnetic island

    Full text link
    The radial structure of the continuous spectrum of shear Alfven modes is calculated in the presence of a magnetic island in tokamak plasmas. Modes with the same helicity of the magnetic island are considered in a slab model approximation. In this framework, with an appropriate rotation of the coordinates the problem reduces to 2 dimensions. Geometrical effects due to the shape of the flux surface's cross section are retained to all orders. On the other hand, we keep only curvature effects responsible of the beta induced gap in the low-frequency part of the continuous spectrum. New continuum accumulation points are found at the O-point of the magnetic island. The beta-induced Alfven Eigenmodes (BAE) continuum accumulation point is found to be positioned at the separatrix flux surface. The most remarkable result is the nonlinear modification of the BAE continuum accumulation point frequency

    Statistical properties of giant pulses from the Crab pulsar

    Full text link
    We have studied the statistics of giant pulses from the Crab pulsar for the first time with particular reference to their widths. We have analyzed data collected during 3.5 hours of observations conducted with the Westerbork Synthesis Radio Telescope operated in a tied-array mode at a frequency of 1200 MHz. The PuMa pulsar backend provided voltage recording of X and Y linear polarization states in two conjugate 10 MHz bands. We restricted the time resolution to 4 microseconds to match the scattering on the interstellar inhomogeneities. In total about 18000 giant pulses (GP) were detected in full intensity with a threshold level of 6 sigma. Cumulative probability distributions (CPD) of giant pulse energies were analyzed for groups of GPs with different effective widths in the range 4 to 65 microseconds. The CPDs were found to manifest notable differences for the different GP width groups. The slope of a power-law fit to the high-energy portion of the CPDs evolves from -1.7 to -3.2 when going from the shortest to the longest GPs. There are breaks in the CPD power-law fits indicating flattening at low energies with indices varying from -1.0 to -1.9 for the short and long GPs respectively. The GPs with a stronger peak flux density were found to be of shorter duration. We compare our results with previously published data and discuss the importance of these peculiarities in the statistical properties of GPs for the heoretical understanding of the emission mechanism responsible for GP generation.Comment: 5 pages, 2 figures. Accepted by Astronomy and Astrophysic

    On the Possibility of Development of the Explosion Instability in a Two-Component Gravitating System

    Full text link
    We obtain an expression for the energy of the density wave propagating in a multicomponent gravitating medium in the form well known from electrodynamics. Using the above, the possibility of "triple production" of the quasi-particles, or waves, with their energies summing up to zero, in a non-equilibrium medium is demonstrated. That kind of resonance wave interaction is shown to result in the development of an explosion instability. By the method developed in plasma physics, the characteristic time of the instability is evaluated.Comment: 15 pages, 3 figures, accepted for publication (JETP

    Negative differential resistivity in superconductors with periodic arrays of pinning sites

    Full text link
    We study theoretically the effects of heating on the magnetic flux moving in superconductors with a periodic array of pinning sites (PAPS). The voltage-current characteristic (VI-curve) of superconductors with a PAPS includes a region with negative differential resistivity (NDR) of S-type (i.e., S-shaped VI-curve), while the heating of the superconductor by moving flux lines produces NDR of N-type (i.e., with an N-shaped VI-curve). We analyze the instability of the uniform flux flow corresponding to different parts of the VI-curve with NDR. Especially, we focus on the appearance of the filamentary instability that corresponds to an S-type NDR, which is extremely unusual for superconductors. We argue that the simultaneous existence of NDR of both N- and S-type gives rise to the appearance of self-organized two-dimensional dynamical structures in the flux flow mode. We study the effect of the pinning site positional disorder on the NDR and show that moderate disorder does not change the predicted results, while strong disorder completely suppresses the S-type NDR.Comment: 10 pages, 1 table, 7 figure

    Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems

    Full text link
    A general electrodynamic theory of a grating coupled two dimensional electron system (2DES) is developed. The 2DES is treated quantum mechanically, the grating is considered as a periodic system of thin metal strips or as an array of quantum wires, and the interaction of collective (plasma) excitations in the system with electromagnetic field is treated within the classical electrodynamics. It is assumed that a dc current flows in the 2DES. We consider a propagation of an electromagnetic wave through the structure, and obtain analytic dependencies of the transmission, reflection, absorption and emission coefficients on the frequency of light, drift velocity of 2D electrons, and other physical and geometrical parameters of the system. If the drift velocity of 2D electrons exceeds a threshold value, a current-driven plasma instability is developed in the system, and an incident far infrared radiation is amplified. We show that in the structure with a quantum wire grating the threshold velocity of the amplification can be essentially reduced, as compared to the commonly employed metal grating, down to experimentally achievable values. Physically this is due to a considerable enhancement of the grating coupler efficiency because of the resonant interaction of plasma modes in the 2DES and in the grating. We show that tunable far infrared emitters, amplifiers and generators can thus be created at realistic parameters of modern semiconductor heterostructures.Comment: 28 pages, 15 figures, submitted to Phys. Rev.
    corecore