View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DSpace@MIT

PSFC/JA-04-11

A Drift Ordered Short Mean Free Path
Description for Magnetized Plasma Allowing
Strong Spatial Anisotropy

Catto, P.J. and Simakov, A.N.

January 2004

Plasma Science and Fusion Center
Massachusetts Institute of Technology
Cambridge, MA 02139 USA

This work was supported by the U.S. Department of Energy, Grant No. DE-FG02-91ER-54109.

Physics of Plasmas, Volume 11, No. 1


https://core.ac.uk/display/78059401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Drift Ordered Short Mean Free Path Description for Magnetized Plasma

Allowing Strong Spatial Anisotropy

Peter J. Catto and Andrel N. Simakov

Plasma Science and Fusion Center
Massachusetts I nstitute of Technology
167 Albany Street, Cambridge, MA 02139

Abstract

Short mean free path descriptions of magnetized plasmas have existed for almost 50 years
so it issurprising to find that further modifications are necessary. The earliest work adopted
an ordering in which the flow velocity was assumed to be comparable to the ion thermal
speed. Later, less well known studies extended the short mean free path treatment to the
normally more interesting drift ordering in which the pressure times the mean flow velocity
is comparable to the diamagnetic heat flow. Such an ordering is required to properly retain
the temperature gradient termsin the viscosity that arise from the gyrophase dependent and
independent portions of the distribution function. Our treatment corrects the expressions for
the parallel and perpendicular collisional ion viscosities found in these later treatments
which used an approximate truncated polynomial expression for the distribution function
and neglected the non-linear piece of the collision operator due to its bi-linear form. The
modified parallel and perpendicular ion viscosities contain additional terms quadratic in the
heat flux. In addition, we solve for the electron parallel and gyro-viscosities which were not
considered by previous drift ordered treatments. As in all drift orderings we assume the
collision frequency is small compared to the cyclotron frequency. However, we permit the
perpendicular scale lengths to be much less than the parallel ones as is the case in many
magnetic confinement applications. As a result, our description is valid for turbulent and
collisional transport, and also alows stronger poloidal density and temperature variation in a
tokamak than the standard Pfirsch-Schitter ordering.

PACS numbers: 52.55.Dy, 52.25.Fi, 52.25.Dg, 52.55.Fa



|.INTRODUCTION

The short mean free path description of magnetized plasma as originally formulated
by Braginskii [1, 2] and Robinson and Bernstein [3] assumes an ordering in which theion
mean flow ison the order of theion thermal speed. Mikhailovskii and Tsypin [4-6] realized
that this ordering is not the one of most interest in many practical situations in which the
flow isweaker and on the order of theion diamagnetic heat flux divided by the pressure. In
their drift ordering the ion flow velocity is assumed to be on the order of the diamagnetic
drift velocity - the case of interest for most magnetic confinement and fusion devices in
general, and the edge of many tokamaks in particular. Indeed, most short mean free path
treatments of turbulence in magnetized plasmas must use some version of the Mikhailovskii
and Tsypin results to properly treat the temperature gradient terms in the viscous stress
tensor. However, the truncated polynomial expansion solution technique of Mikhailovskii
and Tsypin makes two assumptions which we remove to obtain completely general results.
First, they neglect contributions to the viscosity that arise from the full non-linear form of
the collision operator. This modification givesrise to heat flux squared termsin the parallel
and perpendicular viscosities that are the same size as terms found by Mikhailovskii and
Tsypin. Second, because of their truncation only an approximation to the gyrophase
dependent portion of theion distribution function is retained. This approximate form is not
accurate enough to completely and properly evaluate some of the termsin the perpendicular
collisional viscosity. The modifcations to the parallel and perpendicular viscosities that we
find may alter collisional and turbulent transport in some situations.

In many magnetized devices, including tokamaks, the perpendicular scale lengths
can be much shorter than the parallel ones so that the ion gyro-radius over the perpendicular
scale length can be comparable to the mean free path over the parallel scale length. By
considering this general ordering we obtain a formulation that can safely be used to study
turbulent transport in collisional plasmas, and we alow stronger poloidal density and
temperature variation in tokamaks than the normal Pfirsch-Schliter ordering [7-9]. More
specifically, we generalize the short mean free path closure procedure for the collision
frequency small compared to the gyro-frequency by alowing the parallel scale length Lto
be larger than the perpendicular scalelength L | . In Sec. 1 we perform ajoint expansion of
the kinetic equation in the two small parameters

d=p/L, and A=Ah/L, (1)
which we treat as comparable (6~ A), where p = vj/Q isthe ion gyro-radius and A= vj/v
is the Coulomb mean free path, with vj = (2T/M)1/2 the ion thermal speed, v the ion-ion
collision frequency, Q2 theion gyro-frequency, and T and M the ion temperature and mass.



We adopt the Mikhailovskii and Tsypin drift ordering for the mean ion flow velocity
V by assuming it is on the order of the diamagnetic drift velocity which is on the order of
the sum of the ion daimagnetic and collisional parallel heat fluxes G divided by the ion
pressure p = nT with n theion density. As aresult, we order

IVI/v; ~[al/pv; ~9, @)
with V|, ~ |V 1 |- We then solve for the ion distribution function to high enough order that
we can form all components of the ion viscosity as well as the heat flux. An alternate
ordering vj ~ V|| >> |\7¢| for L, ~ L" was considered by Nemov [10].

Our ordering allows turbulent fluctuations to be as large as the unperturbed
background plasma quantities. For the background variations, our ordering is consistent
with, but more general than, the usual Pfirsch-Schiiter tokamak ordering [7-9]. Recall the
standard ion expressions for the parallel heat flux g and diamagnetic heat flux @ ,

oy = -(125p/32Mv)n-VT and §; = (5p/2MQ)Ax VT, (3)
where we define the unit vector fi= B/B with B an arbitrary magnetic field, B = |B|,
Q=eB/Mc for singly charged ions of charge e with ¢ the speed of light, and v =
47V 2ned inA 13MY2T3/2 with ¢nA the Coulomb logarithm. Pfirsch-Schliiter transport
finds q ~ |G | by assuming n-Vv/nT ~'T'/TL", with T asmall correction to the lowest
order flux function temperature T. Consequently, T/ T ~ 8/A << 1 is required. Our
ordering does not require density, ion temperature, or electrostatic potential to be lowest
order flux functions, so n-v/nT ~1/ L” is consistent with g ~[q, | for 6 ~ A.Indeed,
weemploy n-v/nT ~1/ L" and N x V/nT ~1/L | for turbulent fluctuations as well.

In the next section, we perform a systematic expansion of the ion kinetic equation in
the small parameters & and A to determine the ion distribution function to order 82 ~ §A
~ A2 interms of the ion flow velocity and the parallel and diamagnetic heat fluxes of Eq.
(3). Section 111 completes the ion description by evaluating the collisiona perpendicular heat
flux, and the gyro-viscosity and the collisional parallel and perpendicular viscosities. Our
parallel viscosity is shown to contain termsin addition to those found by Mikhailovskii and
Tsypin due to the need to retain the full non-linear ion-ion collision operator. Our
perpendicular collisional viscosity also corrects their expression. Some of these corrections
occur because they used a truncated polynomial approximation rather than the exact
gyrophase dependent portion of the ion distribution function, while the others come from
the need to retain the non-linear collision terms they neglected. Section IV considers the
electron problem which is somewhat ssmpler because the perpendicular collisional viscosity
is negligible and need not be evaluated. Both the electron collisional parallel and gyro-
viscosities are explicitly evaluated. We close with a discussion of our resultsin Sec. V.



[I.1ON FORMULATION
In this section we systematically solve the Fokker-Planck equation for the ion

distribution function f,
of

E+V-(\7f)+VV- ﬁ(é+%\7xl§)f]=C+Cie, (4)
with Ethe electric field, C the ion-ion collision operator, Cje the ion-electron collision
operator, and V,,= d/0v. To do so it is convenient to make a change of velocity variablesto
W =V-V,where nV = [d3wf, n = [d3vf, and continuity requires an/at+V-(nV) = 0. In
the new velocity varible the ion kinetic equation becomes

N e WaV) Vi | Qi xiis S EriVxB) =Y (W+V) VW |-V, f=C+Cp (5)

ot M C ot

where V,, = d/0w. To rewrite Eq. (5) we use ion momentum conservation in the form
Mn(‘Z—\t/+\7-V\7)-en(E+%\7xB)=-Vp-v-ﬁ-ﬁ, (6)

with the ion-electron momentum exchange defined as F= - M fd3V\7Cie, the ion pressure

given by p =nT = (M/3) fd3ww?f , and ion viscosity tensor 7t defined by
% = M [dBw(iw - %WZT)f . 7)

In addition, we use the mass ratio expanded form of the ion-electron collision operator to
write Cje = (Mn)-1F- V,,f sinceion-electron equilibration is smaller by (M/M)Y2 with m
the electron mass. Asaresult, Eq. (5) becomes
QW x -V, f + [W-Vf+ (Mn)-1vp-v, f]+ [3—2 +V-Vf —W-VV-V, f]
+(Mn)-L(v-x)v,f =C, (8)
where compared to the explicit Q term, the termsin the first set of square parenthesis are of
order & or smaller, and those in the second set of square parenthesis are of order 82 or
smaller. In addition, since x includes parallel and gyro-viscosities with V-t ~
Mn(V-VV+ aV/at), theexplicit 7 termin Eq. (8) issmall by order 82 A ~8A2~ 3.

To solve Eq. (8) weexpand f and C in powersof 6~A by writing f = fg+f1+fo+...
and C = Cg+C1+Co+.... For the moment we permit v and Q2 to be comparable and thereby
obtain the following hierarchy of equations:

QWx NV, fqo=Cg, (9)
QW x -V, f1= Cy +[W-Vf 5+ (Mn)~1vp-v,, f ], and (10)

QWx -V, f 5= Cy +[W-Vf+ (MNn)-1Vp-v, f]+ [a;—to +VVig-W-VV-V,fol.  (12)

In the Braginskii ordering VV and V-V termsare one order larger in & so in his treatment
they appear on the right side of Eq. (10). Notice that Co = Co{fo} is the full ion-ion



collision operator operating on fg, C1 = C1{f1} isthelinearized ion-ion collision operator
operating on f1, and the ion-ion collision operator Co must include aterm non-linear inf1 as
well as alinearized term operating on f2 so we can writeit as Co = C1{f2} + Cp{f1,f1}.

The non-linear terms Cx{f1,f1} are neglected by Mikhailovskii and Tsypin, but we
will find contributions to the parallel and perpendicular viscosity from C, for v << Q.
Equations (9) - (11) could also be solved more generally by continuing to permit v ~ Q,
but the algebra would become more tedious. We have implicitly assumed that 8 ~ A <
(m/M)Y2 sp an isotropic temperature equilibration term should enter Eq. (11). However,
such aterm only leads to an isotropic modification of f, so does not alter @ and isignored.

The solution to Eq. (9) isthe drifting Maxwellian

oo M p(M_WZ) o M p[__WV-V)Z], 12)
\ 2nT) o1 )~ "\ 2xT) 2T

and we will construct our full solution for f such that fg gives the correct density,
temperature, and mean velocity; that is, n = [d3vf =[d3vf,, nT = p = (M/3) fd3vfw2=
(M/3) fd3vf qw2, and nV = [d3vfv=d3vf,v. We solve Egs. (10) and (11) by writing
each fj as a sum of a gyro-averaged f j and gyrophase dependent f j pieces by letting fj =
fj+fj, where fj = <fj> and <fj> = 0 with <...> denoting a gyrophase average. The
gyrophase ¢ is defined by writing W = \TVJ_+W"ﬁ with W, =w (&, cosg + &,sing) where
the unit vectors €, and &, are orthogona and normal to B such that & x &, = n.

Inserting fo in EQ. (10) resultsin

2
CL— QU AV, f{=f 0('\"—"T"-—) VT, (13)

which upon gyro-averaging givesthe equatl onfor f, tobe
C=f 0(— - —)W" AvnT (14)

with Cl = <C1>. The Spitzer problem represented by Eq. (14) can be solved by using an
expansion in orthogonal polynomials that depend on x2 = Mw2/2T as a trial function
solution with its coefficients determined variationally [3, 7, 8]. The solution is of order A
and may be written as

F = -2 [ @12) (52 L(3/2)(x2)wf (15)
5pT I"o

where § =G, +qi with §, and qy defined by Eq (3), and where L(O‘)(xz) a+1-x2
and L(O‘)(xz) =[(o + D(at + 2) - 2(a + 2)x2+ x4]/2 are generalized Laguerre polynomials.
Then, subtracting Egs. (13) and (14) and assuming v << Q gives QWxn-V,,fi=
~f o[x2 - (5/2)]W, -V/nT, which has the exact order & solution

fl= -fﬁo L2 (x2)@ x - venT. (16)



Rather than solve for fl to next order, the order v/Q perpendicular heat flux corrections
will be evaluated by a moment approach in the next section. Using Eq. (3), the full
expression for fg = f; + fl may be written as

2Mf "
fi = _?TO L2 (x2)q-w - 1 L2 (x2)qyw, (17)
Notice that Eq. (17) givesthe heat flow § = [d3vfWw(Mw?2-5T)/2 correct to order ~A:
g = (5p/2MQ)Ax VT — (125p/32Mv)AA-VT (18)

where the first and second terms are the usua [1-3] diamagnetic and paralldl collisional heat
fluxes, respectively, and we define fl|| = q”ﬁ = g-nn.

The preceding results are well known [1-6]; however, the solution of Eq. (11) for fo
that follows is new so we present afew more details. To smplify the right side wefirst note

that we may neglect viscous heating and temperature equilibration in energy conservation,

@(ﬂ V-VT)+ pVV + V-G + 7YV = %(Te -, (19)

to obtain
i+\/ Vfo——zifovv+f—(zi— )
at 3 p\ 3

where v = 4(2m)V 2e4ne€nA/3m1/2Tg/ 2 js the electron-ion collision frequency with ne
and Te the electron density and temperature. In addition, using f1 gives
W-VEy =~V 2Mfg LE2 (x2)q - L(3/ 2(x2)q
SpT
and
Vi - 2|\/|f0 [L(g/z)( 2)*

5pT L(3/2)(X2)q' }

15
L 2M%,
5pT2
where we use the double dot convention ab.¢d = b-¢ ad. Asaresult, f, isfound by solving
the gyro-average of Eq. (11); namely,

C{f o} +(Cp{f,f3}) = (W-Vfi+ (Mn)~1vp-v, f1) + (a;—to +V-Vig+ %fow-vv.v\/). (20)

L2021~ 5o - 15187020 | v

Noticethat f, will contain termsof order A2, § A, and 2. Subtracting Eg. (20) from Eq.
(11) and assuming v << Q givesthe equation for fz to be

QW x 1+ V,, 5 + (WW — (W) 5= 0, (21)
where S is defined as

= M 2Mfo [ (3/2) 42 (3/2) o2
§- TV - v{ ST [L (x2) - L (x )ql]

L 2Mfg

+ ot (Vp)[L<5’2>(x2)(q o) - —L<3 2 (xz)q"] (22)



We integrate by using
WW — (WW)=-W x A - Vodlwyit + (1 4)W | W x A+ W x A[wyi + (U 4)W
to find
fz = Q-]{[w"ﬁ + (VAW W x 7t + W x A[wyi + W4w, S

= 8%(ww - %WZT):[F\ x (S+ST)- (1 +3nn) - (I +3A0) - (S+ST) x A (23)
where ST isthe transpose of S and 1= & +&,&,+fin the unit dyad. The second form for
f, is convenient since A x (S+8T)- (T +3An) - (I +3AR) - (S+ ST) x A is symmetric and
traceless with avanishing nn component. The solution for fz contains terms of order §2
and 3 A; theorder v/Q perpendicular viscosity corrections will be evaluated by a moment
approach in the next section. Our solution differs from that of Mikhailovskii and Tsypin [4-
6] who use a polynomial approximation for fz that neglects termsinvolving L(2.5/ 2)(xz) =
L2 (x2) + LD (x2) so their f, only contains Lo(x2) = 1 and L{'?(x2) =
1+ L(13/ 2) (x2). This shortcoming only appears when they evaluate the perpendicular
collisond viscosity since they evauate the gyro-viscosity by a moment approach.

The solution of Eg. (20) for f, ismoreinvolved sinceit is acomplicated Spitzer
problem. We begin by noting that (#w)— (w2/3)1 =w2P,(&)[fin- (U/3)1], where & =
w/w and P,(g)=(352-1)/2 is a Legendre polynomial. Using the preceding, Eq. (20)
becomes

Ci{f o} =H, (24)
where
H = —(Cy{f1,f}) + 2x2P,(E)[ R - (U3)I]:VV + (2f0/3p) L2 (x2)vg
—MWZ[T+(3ﬁﬁ—T)P2(§)]:V{ 2f0 [L(3/2)( Z)q |_(3/2)(X2)q ”
15pT
A x2 _ 4. 4 S T
+ o |20~ 1) - L8P0 | 1T+ (G- NPV
2o L2050 1 L2025 | ve. (25)
5p
To solve Eq. (24) we note the self adjointness of C1 and define the functional
A = [d3wWhC{hf o} - 27 d3whH (26)

whichisvariational (8A = 0 if hfg = f,) and maximal (82A < 0). We only require the
portion of f., that contributes to the parallel viscosity [that is, terms proportional to P, (£)];
so we assume atria function h of the form

h = x2P,(&)[ag + L2 (x2)] . (27)
The coefficients g are determined variationally by minimizing A (0A/ 08 = 0). To perform
the integrals we use the orthogonality of Legendre and generalized Laguerre polynomias
JodEP; (B)P(E) =8/ (2k+1) and [ dzL{M(2)L{M(2) exp(-2) =0 T (k+au+1)/K!,



where djk is the Kronecker deltafunction and I'(k+a.+1) agamma function. The preceding
areused to show [1, 2, 11, 12]

(1 3 1)

9 9 3 265 5,829

dBwx2P, (5)LD(x2)Cy{x2P, ()L D(x2)f g} = - —nvB = ——mv| = 22 2
/ 2(E)L 7 (x2)Co{x=Po (E)L) “(x)f o} 0VCk="10™ 2 a8 128
15 489 11889

32 128 1024

where j and k = 0,1, and 2. Asaresult, wefind
9 3 205
dBwhCy{hf o} = - —nv(a+=aga + ——a2 28
S 1{hf o} 0 (ao+zao 1+ g ) (28)

and

27 d3Wh[H + Cy{f1,f}] = agn(3AVV i - V V) + Z%O(qu-ﬁ - V-G) (29)
+%(3q" -G§)-'Vp -%[ﬁﬁ — (U3)T1{2[3q + (2/5)§)]V4nT +[3V4 + (4/5)Va, L -

Consequently, all that remains to be evaluated are the new g2 and qf contributions to Eq.
(26) from the full non-linear collision term
Coff1,f} = Viy [y fo3W g=3(0%T - G0) - (V= Vi )(Faf I (30)
where y = 2ne*/nA/M2 = 3nl/2T3/2y/2M3/2n, § = W - W', and f = f1(T,W,1).
To evauate the C;, contributions to Eg. (26) it is convenient to form the following
moments:

d JI3WAIC,H{f 1, f1} = 2y fd3gr d3Gf 1 19-3(g?T - 350) (31)
SABWW2[V ~ (1/3)W2T]Cx{f 4,1} = 2y fd3grd3GH,f {g=3[G2 + (92/4)](9?T - 350)
—(4/3g)(G?1 - 3GG) + (2G-5/g3)[2G gl - 3(GH+GG)], (32)

where to get these forms we have integrated by parts, interchanged primed and unprimed
variables (and taken one half the sum), and introduced the new velocity variables
§=wW-Wand G=(W+W )/2. To evaluate the integrals we introduce the dimensionless
variables Ui = (M/T)Y2g/2 and € = (M/T)Y2G towrite

fify M

o W{[(CZ+U2)2 - 10(c2+U2) + 25 - 4(E0)2] ()2 - (6-0)?]
0

+ %[(c% u2)4 - 28(c2+u?)3 +266(c2+u?)2 - 980(c2+u?) + 1225 + 16(¢-U)4

~8(C2+u2)2(T0)2 + 112(c2+u2)(C0)2 - 5o4(a~a)21(q"-6)2 - (@02 ]+ 1—?:5[(c2+ u2)3

-19(c2+u2)2+105(c2+Uu2) - 175 - 4(c2+u2)(CT)2 + 36(é~u)21q.*é-q"- g-ut-g ”]
4¢-U

+1—5[(c2+ u2)2 - 10(c2+u2)+35 - 4(¢0)2 | G-CUG - GUcq ”]} . (33)



We have performed the tedious six dimensional integrals (31) and (32) both analytically
and with Mathematicato find

ORGC{F1, ) = 27 A(G2T-300) + 1 o (o T-30y0y) - 55 (207130 + G (39

and
- - -3v 121, 5~ .
fd3ww2[W\N—(JJ3)w2I]Cz{f11f1} = T{E(qzl - 340)
5400 T-3q,G)) - —[2q|| 1 -3(qgy +Ga)D (35)
Using the preceding results we obtain
9Mnv 331 , 89 14833
dPWhCo{fy,f} =- 2_ 2_ q? 36
J AU 200p2T (0“5 Ten )+ e e R

From the form of Eq. (28), we see dA/ 0a; = 0 gives two equations coupling ag and
a. Toform the pardlel viscosity only ag is needed:

2 8837Mqf . .
_379M¢? af 1025 . oun - wavv] - 331
8900Tp2 89000Tp?  534v

[A-Vo-n-@3)Vvql -

[n vg-n-(13)vq]
952 14 42
= VT -—4§VD+ ——
445 1335pTy VT ~gopzy 4VP* gpz, i
where the g2 and q|| terms are from Cy{f1,f1}.
The complete solution for f to the accuracy we require is given by adding Egs. (12),

(17), (23) and (27). This solution will be used in the following sections to evaluate the
collisional heat flux and the various viscosities.

‘Vp, (37)

[11.10N VISCOSITY AND COLLISIONAL PERPENDICULAR ION HEAT FLUX
The collisional contribution to the perpendicular ion heat flux isformally smaller by
v/Q thantheorder A parallel collisiona heat flux and the order & diamagnetic heat flux. It
is most conveniently evaluated [8,9] by forming the (Mw2/2) W moment of Eq. (4), which
using the definition @ = (1/2)[d3vf (Mw2 -5T)W givesto the two lowest orders
QA x [+ (5p/2M)VT = [d3w(Mw?/ 2)WCy{f } . (38)
Crossing by i, substituting in for f1, evaluating the integrals using [ 13]
[ABWXAWC{X2Wf g} = —(2vpM)T
recalling that to lowest order G, = (5p/2MQ)nx VT, and adding in e yields the familiar
expressions for the collisional perpendicular, diamagnetic, and parallel ion heat fluxes:
G = (5p/2MQ)iix VT - (2pv/MQ2)V | T - (125p/32Mv)fii-VT . (39
Equation (39) along with 7, evaluated next, and F, evaluated in the next section, completes
the closure of the energy conservation equation, which in conservation formis



§t<§p+1|\/|nv2)+v (—p+ |v|nv> =(enE—F=)-\7+%(Te—T).

It is considerably more involved to evaluate the ion viscosity t, which is aso needed
to close the momentum conservation equation (6), which in conservation formis

%(MnV)+Vp+V~(R+ MAVV) = en(E+%\7xI§)— E.

Closure requires evauating the collisional parallel viscosity and collisionless gyro-viscosity,
which can be performed directly using fz and fz, respectfully. In addition, the collisional
perpendicular ion viscosity is most conveniently evaluated by amoment approach.
We begin by evaluating the parallel ion viscosity

oy = M Q3w - %WZDF - (fifi - %T)(p|| “p)). (40)

where py = p+fd3vvf2Mwﬁ, p, = p+fd3wf,Mw?/2, and
Py P = [A3wWwW2P,(E)f .

Substituting in f »= hfg with h given by Eq. (27) and using the orthogonality properties of
the Legendre and generalized Laguerre polynomlalsglves P|—PL= 3pag/2 so that

2 26511M
oy p, - - LM 9P, 2025 0 vy 476 g
17800Tp 178000Tp 1068v 445T
33
) [V qy —3n-vq,-n] ——[q “Vp-3q,Vpl,

with g and q" given by their lowest order forms (3) or (18). The first two terms are
proportional to g2 and qﬁ and arise because our d~A ordering requires us to retain
Co{f1,f1} in Eq. (24). Likethe V-é]" - 3ﬁ-Vq"-ﬁ term, they have small coefficients, but are
formally of the same order as the remaining terms previously obtained by Mikhailovskii and
Tyspin [4-6]. Indeed, the q" VT and qﬁare exactly of the same form and so can be
combined to Write

319417Mqf
n" = (AN - = ) %[pVV +(2/5)V-G - 3pA-VV i - (6/5)A- V-] + S22 Ay
1068v 890000Tp

1137Mql} 1)

~ o e = o 28 ok o =
—@[anp -V-g+3n-vgn- 3q||-Wnp] + A5 [V-q" - 3n-Vq”~n]

17800T

or, in amore compact double dot notation form similar to Mikhailovskii and Tsypin's,

o = 0.960 7 _ 3ﬁﬁ):{(pV\7 ' qu)+ 0.246(V - GV/np + %Vq")}(ﬁﬁ _ %T)

IoT[o 412q7 ~0.064q2 (fin - :—13T) . (42)

10



Notice that for our ordering the pV~\7l, V-4,,and q, -V/np arelarger by L"/Ll than the
remaining terms. However, these terms only appear in the combinations 5pV-V 1+2Vq,
and pv-4, -4, ‘Vp which arethe same order as al the other termsin R".
The gyro-viscosity is evaluated by using fz in Eq. (7):
- 1l e =
fig = Mfd3w(ww—§wzl)f2 = M d3winf, . (43)

Inserting Eq. (23) for f,, using [d3w@iniwvQ = V[ d3wininvwQ and
[d3w WaWBWGWny = n(T/M)Z[éaﬁé + 6&7606 + 6a06[5y] ,
noting L(23/ 2)(x2) = L(25/ 2)(x2) - '-(15/ 2)(x2), and using the orthogonality relations for the
Legendre and generalized L aguerre polynomialsto show
JE R |_(5’ 2 (x2)f g =
we find the Mikhailovskii and Tyspin [4-6] r&sult for the gyro-wscosity, namely,

.1 T
TCg4—nX

- (7 +3nn)

(Vv +2 Vq\ (Vv +2 Vq\

\ )+ ) -(T+3ﬁﬁ)

T

(pVV+ Vq) (pVV+ Vq)

with g given to lowest order by Eqg. (18). Equation (44) isthe normal definition of the gyro-
viscosity r“cg as found from the gyrophase dependent fz part of f by assuming v << Q.
However, it is not completely diamagnetic since it depends on collisions through ¢ due to
the f, contributions to Eq.. (11). As aresult, the ¢ terms in this form of gy and Eq. (23)
for f, cannot be obtained from the strictly collisionless gyrophase dependent term used to
derive the Hazeltine drift kinetic equation [14, 15]. We also remark that the radial flux of
toroidal angular momentum in the Pfirsch-Schliter regime is thought to be due to poloidal
variation of fcg caused by the poloidal variation of B in atokamak for 6 << A[7].

To complete the ion description we need to evaluate the collisional portion of the
perpendicular ion viscosity 7, . To this end we use a moment approach to evaluate 7 .
Forming the ww moment of Eq. (4) or (8) gives

Q(ftxN - Nx3t)+M [d3wWiwC =1[ap/at+V-(pV)] +V~(Mfd3vvf\7vW\7v)+pV\7+p(V\7)T,
where the contribution from Cje vanishes and we have neglected higher order terms
involving time and space derivatives of 7 that are small by §2Q/v << 1 (recall that we
assume v >> 9/ dt ~ 82Q to find f). The trace of the preceding equation is

apl 9t +V-(pV) +V-[(M/3)[fd3wfw2]+(2p/3)V-V = 0,
since energy must be conserved in like particle collisions. Combining these two equations to
eliminate op/dt givesthe desired moment form
Q(7ixA-nxi)= K (45)

X ﬁ} , (44)
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where K isthe symmetric and traceless tensor
K = pvV+p(VV)T- (2p/3)1V-V+(2/5)[Vd + (VG) T~ (2/3)TV-G]-M [ d3wini/C.
and we have substituted in for f to find
V-{M [d3wf W[ (W2/3) T = (2/5)[ VG + (VA) T- (2/3)1 V-] .
From Eq. (45) we seethat K must have the property i-K-fi = 0. To make this true term by
term we can make the replacement K — K + (1/ 2)(1-3nR)AK-n. Asaresult, K becomes

—(pVV+ Vq) (pVV+ Vq) -—|(pv-\7+§v'q)-|v|fd3\wwc

H(1-3R)A(PVV + VG- (VT 42 V) - MycufC],  (46)

where the terms not involving C lead to the gyro-viscous contribution and the C terms will
yield the collisional corrections to the perpendicular viscosity. To see this behavior we solve
Eq. (45) tofind [15] 7 = (1/4Q)[fix K-(T + 3fiA) - (I + 3fif)- K xfi] + 5t or upon using (44),
ﬁ=ﬁ”+ﬁg+é[ﬁx K, -(T+3nn) — (T + 3nn)-K , x] , (47)
where we define K,, = -M [d3wiiwC - (T—3ﬁﬁ)(M/2)fd3vvwﬁC. In writing down the
solution to Eq. (45) we added in a homogeneous solution which can only contain terms
proportional to | and AR and must equal ﬁ:" since no isotropic termisalowedin 7.
To evaluate the collisional terms we first define C=C+C with
C = Cyff 5} +(Cx{fy,f1}) and C-= Cl{fz} + Co{f1,f1} - (Cx{f1,f4}). Using Egs. (24) and
(25) for C and recalling (W) — (Ww2/3)1 = w2P, (€)[in - (1/3)1] we see that
Ko = -Myd3wini/C - (T_3ﬁﬁ)(M/2)fd3\MNﬁC= 0. (48)
The gyrophase dependent collisional terms are evaluated by using Eq. (34) to find
M [d3wWW{Co{f1,f4}) =§(ﬁﬁ -lf)ﬁﬁ; M fd3W\TV\TvC2{f1,f1}
9Mv / 2 331 \
100pT\ 150 )
We require the symmetric and traceless combination
Ko = —Mfd3vv\Wv[C2{f1, 1 = (Coff1,f41)]
- 5932; (qq||+q||q)——q (T -An)+ > qﬁ(l —f—;“) (49)
where K-l = 0. The tensor K, containsal the new quadratic heat flux terms.

Using the self-adjointness of the linearized collision operator the final integral
required is
M [ d3WAVC,{F 5} = M fdBw(F o/ f o) Co{ Wit o} (50)
Using the procedure in Appendix C of Ref. 13 we write
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Cyfic o} = 306) (i — - w) (51)
with

12 '
3= - [(1- B+

(52)

and E(x) = 2n~Y2(T dtexp(-t?) the error function and E'(x) its derivative. Using the
preceding for a symmetric and tracel ess tensor T(I? gives

Tt r 3L (x)RWC{ v o} = (2/15) T rdBwL () (x2)wAJ(x) (53)
2y 1 k=0, o
——T ¢ raBwL{ (x2)| it Sw2T ). Co Wt g = — 12”T2 Tel 3/ k=1 a=5/2
" 5M 9/32 k=2, 0=3/2
snce
32( 1 k=0 a
12 dxxBIx)LL (x2) = _9—”V/ MY 32 ko1 a=52 (54)
n \2T) |_9/32 k=2 a-=3/2

Moreover, again using Egs. (51) and (52) we find

FA3wi GHVQ)IIN — (U 3W2TT. C{ W g} = (2/3)fd3wwAf 513(x)VQ
= (2n/3)V[fd3wwAI(x)n~1f 51Q] + (2v/3M)(VT)rd3wQw2(a/ax)[x33(x)/ vf 5] , (55)
whereto evauate the final integral we also need

32( 1 k=0 o
Vi dxxAL{O (2)f o (81 ax)[x3Ix) v o] = — 2 (M) { 5/4 k=1 o-=>5/2.(56)

16 \2T) | 532 k=2 =312
Inserting Eg. (23) into Eq. (50) and using Egs. (53)-(56) to perform the integrals yields
Ky = -M[d3wawC{f,} = %[ﬁx\fV-(hSﬁﬁ) - (T+3ﬁﬁ)-\7Vx f (57)
whereit is convenient to define W as asymmetric, traceless tensor with ii-W-f = O:
pW = W, + WT + (T-36n)A-W,- i - (T-AR)T: W,

where

3(pVG-4vp)  (3pVvda;+5G,Vp) (90q-13q))VT
10p 100p 400T '

The preceding results allow us to use Eqg. (47) to form the full collisional

perpendicular viscosity. To do so, we define the full ion viscosity as
=T+ g+ =T +Tg+7T 1+, (59)

v”v*=pV\7+§Vf1— (58)

where theindividua contributionsto 7, aregiven by

1 =é[ﬁxl?k-(hBﬁﬁ)—(T+3ﬁﬁ)~kaﬁ] (60)
withthe K for k = 1 and 2 given by Egs. (49) and (57) (recall K, = 0). The subscript "1"
denotestermsin t; from the linearized collision operator, while the"2" subscript denotes
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the new terms that are quadratic in the heat fluxes g and q” from the non-linear collision
operator. Because | and fifi in K, do not contribute, we find the new terms in the

collisiona perpendicular viscosity to be
%12 = ~ 5007 L A0+ 150 ~(@+ ;AP (61)
These terms quadratic in the heat fluxes g and C]" were not obtained by previous treatments.
The lowest order forms of Eq. (3) or (18) are to be employed for g and a" here and
elsewherein 7 .
Inserting Eq. (57) into Eq. (60) and using A-W-A = 0 = W:I to show that
AxWx i = (T-nAn)-W-(1-nn) givesthe form for 7 ; to be
Tyg= -
10Q2
Ignoring homogeneous terms proportional 1 and/or il that are v/Q corrections to the fc"
of Egs. (41) or (42), completes the description for the viscosity giving

[W + 3(A AW + W-Ri R)] .

- 3v

"1 T1002
or using Eq. (58)

. 3v
= 1092{pVV+ VG +(pVV+2 Vq)T—Fp[qu GVp +(PVG-GVp)T]

[W,+WT +30(AW, +W, 1) +3(AW,+W, - 1)A)] (62)

1

~ 1000 (90g - l3q||)VT+ (VT)(904 - 1)

)T[

\ G\

[ ( +—Vq——Vq") (pVV+—Vq—— )ﬁ]ﬁ

) ﬁ} (63)

100 100
+—ll[ﬁVp+ (V)R] + —[ﬁq + G - —q"ﬁﬁ]ﬁ-Vp

_uif)lq [T + (VTR - 2[00 + a - = oyl VT}

Thisportion of 7, does not agree in detail with the result of Mikhailovskii and Tsypin [4-
6] because they used an approximate form for fz, while we use the exact result of Eq. (23).
Some of the discrepancies are as follows: (1/10) Va" not -0.27V(j”, q”VpIG rather than
zero, and [ G- (13/90)y] VT not (8/3)(q-0.276,) VT. They occur because Mikhailovskii
and Tsypin neglect x4 and x6 terms in the coefficients of Vq", q”Vp, and gVT and q”VT,
respectively, in Eq. (22) for Sin f,.

Theion description is now complete except for the momentum exchange term Fthat
is evaluated in the next section when we consider the closure for the electrons.
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IV.ELECTRON FORMULATION

The treatment of the electrons shares many similarities with that of the ions so fewer
details will be presented. It isincluded for completeness since el ectrons were not considered
in Refs. [4-6]. Only, the perpendicular viscosity will be assumed negligible.

Introducing the shifted electron velocity variable W = V - V4 with nV g = [d3wf
n=ng=[d3vfg, an/dt+V-(nV,) = 0, and using electron momentum conservation

mn(%+\7€-vve)+en(é+%\76xI§)=—Vpe—V-fce+r: (64)
with pg = NTg = myd3wf w2/3, 7o = myd3wliw — T(w2/3)]f,, and F=mfd3wCy,
gives the kinetic equation for the electron distribution function fe to be

QW x 11°V, f o + Cg= [W-VF o+ (MN)~L(Vp, - F)-V,, o] +
[% +V g Vig —W-VV oV, f o] + (MN)~L(V-iig) v, fo . (65)

Electron quantities are denoted by subscript "€" to distinguish then from the unsubscripted
ion quantities, with Q=eB/mc. The collision operator C,= Co+ C4 is the sum of like
and unlike particle contributions, with Cq = L + D. The Lorentz operator L is given by
L{f o = [32n)Y2(T/m)32v 414V, - (V\, VyW* Viufe)- (66)

The operator D isasmall correction to pitch angle scattering associated with the difference
in the mean flows between the ions and electrons. To lowest order it is given by
D{f J=Cg-L = -[32m)V2(T/m)32v 414V, [(V = V) Vi, Viy VW - Vi o +---1, (67)
where the terms not shown are mass ratio corrections which lead to isotropic ion-electron
equilibration modifications that do not alter 7, and V istheion mean velocity.

To determine fe it is convenient to expand using fo=f o+ 1o+ foo+... We first
solve the lowest order equation

QW x NV, foe+Cphee+Lpg=0

to find that foe isaMaxwelian drifting at the mean velocity of the electrons, namely,
3/2

([ m ) m(v -V )2
f0e=nk2 = ) exp —% . (68)
Ttlhe e

To next order
QW x 11V, f10 + Ciee + L1= [W-Vf oo+ (MNg)"1(Vpe- F)-V,,f ol =Dy, (69)
where Li=L{fc}, Dg=D{fge}, and Ciee= Cielf1e} isthe linearized electron-electron
collision operator. To find the lowest order gyrophase dependent portion of f1e we need
only solve
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2
. mw< 5,

QeW X n'VWf1e= foe(?e - E)WJ_ VEnT
to obtain

f
o= -f(xg - g)w x-VINnTg (70)
e

where x3 = mw?/2T,,.
The equation for gyrophase independent portion of f1¢ is more involved since
F” = A+ F and Do must be retained When solving its lowest order form

Clee + Ll_ fOe(X - —)W" n-venT + W”F"f Oe/ Pe - DO, (71)

where Cy=L1+Dg and D =[3(2m)V2(T/m)Y2vg/2w3)(V - V) - W 5. We solve
for f. variationally since C1ee and L1 are self-adjoint. Using atrial function that does not
ater the mean flow,

f1e = [01L¥2 (x2) + 0L 2 (x2)wf g, (72)

wefind the variationally determined coefficients to be

12(373 + 389+/2) 56995 + 2936012 ;.
1= —( 1~ Vie) + — |vgin-vinT,
16447 +15912/2 | T 32984 + 31824+/2
and
12(42-2) 1 m 30(23+4V2)] _4.
b, = | ZATNe=2) | T o = L lvglie vienT,.
2 [505+ 604@}T Vi=Vie)- [505+ 6042

Knowing f1e we can evaluate the electron heat flux G = [d3vf W(mw?-5T)/2to
lowest order to find the diamagnetic and paralel contributions of Braginskii [1, 2]:
Ge = —(5Pe/2MQ)Aix VT - 3162(pe/ MV )AR-VT - 0.711ps (V) - Vo). (73)
A moment approach can be used to evaluate the collisional perpendicular heat flux.
Accounting for momentum exchange and unlike collisions the electron version of (38) is
Qg lg x N+ (5pe/2M)VT g = Tof A3 XZC e+ [X3- (5/2)](L1+ D)}
where the momentum exchangeterm F gives rise to the (5/2)(L1+Dg) terms. Carrying out
the integrals, noting that only fle is required, and adding in q”e gives the standard
Braginskii result
Ge = —(5Pe/2MQ)ix VT o - 3.162(pg/ Mv g )AN-VT o - 0.711pe (V) - V)
—~ (4.66v4 P/ MR2)V | T — (3pgVe /2Qe)x (V-V,) (74)
The preceding isto be inserted in the electron energy balance equation

0Te o - L e o 3mnv
3Ir'( FV VT + PV g + Vel + g VW = - 8

(Te— T)+ (V- Ve) F (75)
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or in conservation form

d/3 1 5 v
a(zpe+ mnV2)+V ( Pe + = mnvz) otitgVetle
BV 4 BV Ve (7).

In addition, we must evaluate the lowest order momentum exchange term using

F = myd3wWCg = myd3ww[L, + Dol = mnvg (V - Vo) - F
with

3nV 2T3/ 2Ve1 d3w
* (2m)1/2 f 3 1e

= (3MV /2Q¢)AXVT g+ 0.71NARVT ¢ + 0.49mnv (V| -V e) (76)

to find the Braginskii expressions for the friction and thermal force
F=mmvg[(V -V 1) + 0.51V -V )] - (3nvg /2Qg)ix VT o~ 0.7LNAR-VT, . (77)
This result for the momentum exchange between electrons and ionsis to be used in both the
electron and ion conservation equations. Higher order corrections are not required since
|F-V|~|V-G| for G, the collisional perpendicular heat flux.
To evaluate the electron viscosity to complete the closure of the electron momentum
and energy equationsit is convenient to use the lowest order expression for g.and define
q, =1581(pe/Mvg)Nn-VTg —0.0807pg(V| - Ve (78)
to obtain the form
f1e = —(2mf oe/SpeT LY P (x2)g + L2 (x2)a, 1-W . (79)

Notice that our electron orderingsimplicitly assume Gg/peVe~Vo/Ve~ pe/L | ~ MI-V/INT
<< ML sothat parallel electron temperature variations are weak and an adiabatic electron
responseis allowed, where A isthe mean free path, v, = (2T/m)Y2 and pg = v/ Q..

To evaluate the parallel electron viscosity we need to find f,¢ by solving the lowest
order gyroaveraged equation

Copet Lo= (WVfio+ (Mn)=1(Vpe- F)-V,,f1a) + < € 4V Vi o= WYV oV, f e), (80)

where Ly = L{f 5¢} and Cpee = Cpee{f e} + <C2ee{f1e’ 16}) With (Coee{f1e.f1¢}) the full
gyroaveraged non-linear electron-electron collision operator acting on fie and Cy.the
linearized collision operator acting on f .. Notice that D; can be neglected because the
flows are small compared to the electron thermal speed and we are not interested in the
isotropic equilibration contributions to f,.. The self-adjointness of Ci{f,¢ and
L, = L{f, alowsusto solvefor f, variationally. The technique is the same as for the
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ions except that L, must be retained. As for the ions, we only need terms proportional to
P, (&) to form the parallel viscosity so we need only consider

foe/foe = X2P5(E)lco + LY D (x2)]. (81)
Solving asfor theionswe find
1
e = My d3w(Wi - —w2I e = (AR - = Ly )(p"e Ple) (82)
with
P, = [ABWW2ZP,(E)f . = S3pcg=|—3m [(6056+24169\/§)(3 2 —q2)
p”e pJ_e _f 2 2e = 2 p 0~ 4430200pe-|-e q"e qe

+5(32854+/2 - 26035)G¢ G, +—(16433 36)q2] MMV-(* -4q,)

22151v
-3V (Ge- 0, )T+ (20~ G, - 60+ 3y, ) VAN ~(Ge ~ i) (VNP PglF)]

, 5[23479v2 - 13775
6|  2215lvg

Hpev-\76+§v-qe_ 3peﬁ-V\7e-ﬁ—gﬁ-qu-ﬁ]. (83)
The preceding can be written more compactly using double dot notation as

0.731 - .. - 2 ~ = L
Ple—PLe = T(I - 3nn)-.{(peVVe+ =Vig) - 0.391[qe(V/npe- pglF) - V(G- G,)
el

(20 q*)anTe}+ E [0.027(30f, - 92) +0.069¢ G, + 0.05292] . (84)
e

In Ple=P.Le: the lowest order expressions for Ggand q"eare to be used. The preceding
result for r“c”e assumes the weak parallel variation of the electron temperature ordering
Oe/PeVe~VelVe~pe/L |~ M-VINT,. However, if R-VINT, ~1/L then we may adopt
this strong parallel variation of the electron temperature ordering A/ L” ~ e/ PeVe >>
pe/L |~V /Ve tosimplify 5 considerably.
The evaluation of the electron gyro-viscosity is similar to that for theions since f 5
satisfies
QW x AV, oo — (W - (WW)):S, = 0 (85)
with
5, - TmeeVVe - v{ im—fOG[L(f” 2(x2)q+ LY (x2)q, ]}
e peTe

2mf = ~ _
e (VPe- BLE 20+ L5202, | (86
The preceding formsare simi Iar to Egs. (21) and (23) with the result that

e = —QgN[wyfi + (AW IW x i+ W x Afwyii + (U 4w, 1S, . (87)
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Forming the electron gyroviscosity, e = m fd3W\TV\vaZe, by the same procedure used for
theionsyields

T —_—1 nx
% a0,

~(7+3nn)

T

(peV\76+§VC|e) + (peV\76+§VF]e) -(T+ Bﬁﬁ)

T
(pevve"‘%VQe) + (peV\7e+§qu) } X ﬁ} : (88)

The electron parallel and gyro-viscosities are needed for the energy and momentum balance
equations, where the conservation form of the electron momentum balance equation is

J -, - — o = 1~ = =
a(mneve) +Vpe +V: (g + MNV V) = —en (E+ EVex B)+F.

The combined ion-electron short mean free path closure is now complete. Only
perpendicular electron viscosity has been neglected.

V. DISCUSSION

Our short mean free path description of magnetized plasmas considers the normally
more interesting situation when the pressure times the mean flow velocity is allowed to be
comparable to the diamagnetic and collisional paralel heat flows,; and the mean flow ison
the order of the diamagnetic and magnetic drift speeds: the drift ordering. It removes
shortcomings of and extends the pioneering work by Mikhailovskii and Tsypin [4-6] who
first realized the limitations of the Braginskii [1-2] and Robinson and Bernstein [3]
formulations which are only valid for flows on the order of the ion thermal speed (often
referred to asan MHD ordering). Asin all drift ordering treatments we assume the collision
frequency to be small compared to the cyclotron frequency. However, we permit the
perpendicular scale lengths to be much less than the parallel ones as is the case in many
magnetized plasma applications. As aresult, our description isvalid for both turbulent and
collisional transport treatments.

Our treatment of the ions finds additional terms in the parallel viscosity, Eq. (42),
that are quadratic in the heat flux and were missed by earlier treatments which neglected the
full non-linear collision operator term Cy{f1,f1} in the kinetic equation, Egs. (24) and (25),
for f,. Quadratic heat flux terms also enter the perpendicular viscosity 7, =, + 7| o,
which we evaluate by a moment approach using Eq. (45) that thereby involves moments of
the non-linear collision operator Co{f1,f1}. Asaresult, our 7, , term is new and not
contained in previous treatments. Furthermore, our result for &, , differs from that of
Mikhailovskii and Tyspin [4-6] since they truncate their Laguerre polynomial expansion
after only two terms while we keep the full gyrophase dependent expression for fz. Their
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truncated approximation for fz does not affect their gyro-viscosity fcg sincethey evaluateit
from amoment approach, equivalent to (48), that only requiresf;. The complete description
for the ions consists of the conservation of number, ion momentum, and ion energy
equations with the ion heat flux g given by Eq. (39), with the ion viscosity
= o + ch +7, 1+ 7, 5 given by Egs. (41) or (42), (44), (61) and (63), and with the
momentum exchange between theions and eectrons, F, given by Eq. (77). Equations (58)
and (61) are amore compact version of Eqg. (63).

Our evaluation of the electron parallel and gyro-viscosities is new since electrons
were not considered in earlier drift ordering work. Of course, in the large flow limit our
electron (and ion) results agree with Braginskii [1-2] and Robinson and Bernstein [3]. We
have not evaluated the perpendicular electron viscosity sinceit issmall and unlikely to be of
interest. The calculation could be performed by the simliar procedure as used for the ions.
Our complete description of the electrons is the conservation of electron momentum and
energy equations with the electron heat flux G, given by Eq. (74), the electron viscosity
= fc”e + ﬁge given by Egs. (82), (83) or (84) and (88), plus the momentum exchange term
of Eq. (77) and the expression for G _ as given by Eq. (78). We have assumed singly
charged ions and invoked quasi-neutrality so that the el ectron-electron collision frequency
equals the electron-ion collision frequency vy .
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