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167 Albany Street, Cambridge, MA 02139

Abstract

Short mean free path descriptions of magnetized plasmas have existed for almost 50 years

so it is surprising to find that further modifications are necessary. The earliest work adopted

an ordering in which the flow velocity was assumed to be comparable to the ion thermal

speed. Later, less well known studies extended the short mean free path treatment to the

normally more interesting drift ordering in which the pressure times the mean flow velocity

is comparable to the diamagnetic heat flow. Such an ordering is required to properly retain

the temperature gradient terms in the viscosity that arise from the gyrophase dependent and

independent portions of the distribution function. Our treatment corrects the expressions for

the parallel and perpendicular collisional ion viscosities found in these later treatments

which used an approximate truncated polynomial expression for the distribution function

and neglected the non-linear piece of the collision operator due to its bi-linear form. The

modified parallel and perpendicular ion viscosities contain additional terms quadratic in the

heat flux. In addition, we solve for the electron parallel and gyro-viscosities which were not

considered by previous drift ordered treatments. As in all drift orderings we assume the

collision frequency is small compared to the cyclotron frequency. However, we permit the

perpendicular scale lengths to be much less than the parallel ones as is the case in many

magnetic confinement applications. As a result, our description is valid for turbulent and

collisional transport, and also allows stronger poloidal density and temperature variation in a

tokamak than the standard Pfirsch-Schlüter ordering.

PACS numbers: 52.55.Dy, 52.25.Fi, 52.25.Dg, 52.55.Fa
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I. INTRODUCTION

The short mean free path description of magnetized plasma as originally formulated

by Braginskii [1, 2] and Robinson and Bernstein [3] assumes an ordering in which the ion

mean flow is on the order of the ion thermal speed. Mikhailovskii and Tsypin [4-6] realized

that this ordering is not the one of most interest in many practical situations in which the

flow is weaker and on the order of the ion diamagnetic heat flux divided by the pressure. In

their drift ordering the ion flow velocity is assumed to be on the order of the diamagnetic

drift velocity - the case of interest for most magnetic confinement and fusion devices in

general, and the edge of many tokamaks in particular. Indeed, most short mean free path

treatments of turbulence in magnetized plasmas must use some version of the Mikhailovskii

and Tsypin results to properly treat the temperature gradient terms in the viscous stress

tensor. However, the truncated polynomial expansion solution technique of Mikhailovskii

and Tsypin makes two assumptions which we remove to obtain completely general results.

First, they neglect contributions to the viscosity that arise from the full non-linear form of

the collision operator. This modification gives rise to heat flux squared terms in the parallel

and perpendicular viscosities that are the same size as terms found by Mikhailovskii and

Tsypin. Second, because of their truncation only an approximation to the gyrophase

dependent portion of the ion distribution function is retained. This approximate form is not

accurate enough to completely and properly evaluate some of the terms in the perpendicular

collisional viscosity. The modifcations to the parallel and perpendicular viscosities that we

find may alter collisional and turbulent transport in some situations.

In many magnetized devices, including tokamaks, the perpendicular scale lengths

can be much shorter than the parallel ones so that the ion gyro-radius over the perpendicular

scale length can be comparable to the mean free path over the parallel scale length. By

considering this general ordering we obtain a formulation that can safely be used to study

turbulent transport in collisional plasmas, and  we allow stronger poloidal density and

temperature variation in tokamaks than the normal Pfirsch-Schlüter ordering [7-9]. More

specifically, we generalize the short mean free path closure procedure for the collision

frequency small compared to the gyro-frequency by allowing the parallel scale length L||  to

be larger than the perpendicular scale length L⊥ . In Sec. II we perform a joint expansion of

the kinetic equation in the two small parameters
δ = ρ/L⊥     and     ∆ = λ /L|| (1)

which we treat as comparable (δ~ ∆ ), where ρ  = vi/Ω  is the ion gyro-radius and λ= vi/ ν

is the Coulomb mean free path, with vi = (2T/M)1/2 the ion thermal speed, ν the ion-ion

collision frequency, Ω  the ion gyro-frequency, and T and M the ion temperature and mass.
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We adopt the Mikhailovskii and Tsypin drift ordering for the mean ion flow velocity

  
r
V  by assuming it is on the order of the diamagnetic drift velocity which is on the order of

the sum of the ion daimagnetic and collisional parallel heat fluxes   
r
q divided by the ion

pressure p = nT with n the ion density. As a result, we order

  |
r
V|/vi ~|

r
q| /pvi ~ δ, (2)

with V|| ~ |
  

r
V⊥ |. We then solve for the ion distribution function to high enough order that

we can form all components of the ion viscosity as well as the heat flux. An alternate

ordering vi ~ V|| >> |  
r
V⊥ | for L⊥~ L||  was considered by Nemov [10].

Our ordering allows turbulent fluctuations to be as large as the unperturbed

background plasma quantities. For the background variations, our ordering is consistent

with, but more general than, the usual Pfirsch-Schlüter tokamak ordering [7-9]. Recall the

standard ion expressions for the parallel heat flux q|| and diamagnetic heat flux 
r
q⊥ ,

                q|| = −(125p/32Mν)
r
n ⋅∇T    and     

r
q⊥ = (5p/2MΩ)

r
n ×∇T, (3)

where we define the unit vector   
r
n=   

r
B/B with   

r
B an arbitrary magnetic field, B = |  

r
B|,

Ω=eB/Mc for singly charged ions of charge e with c the speed of light, and ν =

4π1/2ne4 lnΛ /3M1/2T3/2, with lnΛ  the Coulomb logarithm. Pfirsch-Schlüter transport

finds q|| ~ |
r
q⊥ | by assuming 

r
n ⋅∇lnT ~ T̃/ TL|| , with T̃ a small correction to the lowest

order flux function temperature T . Consequently, T̃ / T ~ δ /∆  << 1 is required. Our

ordering does not require density, ion temperature, or electrostatic potential to be lowest

order flux functions, so   
r
n ⋅∇lnT ~ 1 / L|| is consistent with  q|| ~ |  

r
q⊥ |  for δ  ~ ∆ . Indeed,

we employ   
r
n ⋅∇lnT ~ 1 / L|| and   

r
n × ∇lnT ~ 1/ L⊥for turbulent fluctuations as well.

In the next section, we perform a systematic expansion of the ion kinetic equation in

the small parameters δ  and ∆  to determine the ion distribution function to order δ2 ~ δ∆

~ ∆2  in terms of the ion flow velocity and the parallel and diamagnetic heat fluxes of Eq.

(3). Section III completes the ion description by evaluating the collisional perpendicular heat

flux, and the gyro-viscosity and the collisional parallel and perpendicular viscosities. Our

parallel viscosity is shown to contain terms in addition to those found by  Mikhailovskii and

Tsypin due to the need to retain the full non-linear ion-ion collision operator. Our

perpendicular collisional viscosity also corrects their expression. Some of these corrections

occur because they used a truncated polynomial approximation rather than the exact

gyrophase dependent portion of the ion distribution function, while the others come from

the need to retain the non-linear collision terms they neglected. Section IV considers the

electron problem which is somewhat simpler because the perpendicular collisional viscosity

is negligible and need not be evaluated. Both the electron collisional parallel and gyro-

viscosities are explicitly evaluated. We close with a discussion of our results in  Sec. V.
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II. ION FORMULATION

In this section we systematically solve the Fokker-Planck equation for the ion

distribution function f,

  

∂f
∂t

+ ∇ ⋅ (
r
vf) + ∇v ⋅

e
M

(
r
E +

1
c

r
v ×

r
B)f





= C + Cie , (4)

with   
r
E the electric field, C the ion-ion collision operator, Cie the ion-electron collision

operator, and   ∇v = ∂/∂
r
v. To do so it is convenient to make a change of velocity variables to

  
r
w =

r
v −

r
V, where   n

r
V = d3v

r
vf∫ , n = d3vf∫ , and continuity requires  ∂n/∂t +∇⋅(n

r
V) = 0. In

the new velocity varible the ion kinetic equation becomes

  

∂f
∂t

+ (
r
w +

r
V) ⋅∇f + Ω

r
w ×

r
n +

e
M

(
r
E +

1
c

r
V ×

r
B) −

∂
r
V
∂t

− (
r
w +

r
V) ⋅∇

r
V









 ⋅∇wf = C + Cie. (5)

where   ∇w = ∂/∂
r
w. To rewrite Eq. (5) we use ion momentum conservation in the form

  
Mn(

∂
r
V
∂t

+
r
V ⋅∇

r
V) − en(

r
E +

1
c

r
V ×

r
B) = −∇p − ∇ ⋅

t
π −

r
F, (6)

with the ion-electron momentum exchange defined as  
r
F= - M d3v

r
vCie∫ , the ion pressure

given by p = nT = (M/3) d3∫ ww2f , and ion viscosity tensor 
t
π   defined by

t
π = M d3∫ w(

r
w

r
w −

1
3

w2
r
I)f . (7)

In addition, we use the mass ratio expanded form of the ion-electron collision operator to

write Cie = (Mn)-1
  

r
F ⋅∇wf  since ion-electron equilibration is smaller by (m/M)1/2 with m

the electron mass. As a result, Eq. (5) becomes

  
Ω

r
w ×

r
n ⋅∇wf + [

r
w⋅∇f + (Mn)−1∇p⋅∇wf] + [

∂f
∂t

+
r
V⋅∇f −

r
w⋅∇

r
V⋅∇wf]

  + (Mn)−1(∇⋅
t
π)⋅∇wf = C , (8)

where compared to the explicit Ω  term, the terms in the first set of square parenthesis are of

order δ  or smaller, and those in the second set of square parenthesis are of order δ2 or

smaller. In addition, since   
t
π  includes parallel and gyro-viscosities with   ∇ ⋅

t
π  ~

Mn(  
r
V⋅∇

r
V+   ∂

r
V/∂t ), the explicit  

t
π  term in Eq. (8) is small by order δ2 ∆~ δ∆2~ δ3.

To solve Eq. (8) we expand f and C in powers of δ~ ∆  by writing f = f0+f1+f2+...

and C = C0+C1+C2+.... For the moment we permit ν and Ω  to be comparable and thereby

obtain the following hierarchy of equations:
Ω

r
w×

r
n ⋅∇wf 0 = C0 , (9)

Ω
r
w×

r
n ⋅∇wf1= C1 + [

r
w⋅∇f 0 + (Mn)−1∇p⋅∇wf 0], and (10)

Ω
r
w×

r
n ⋅∇wf2 = C2 + [

r
w⋅∇f1+ (Mn)−1∇p⋅∇wf1] + [

∂f 0
∂t

+
r
V⋅∇f 0 −

r
w⋅∇

r
V⋅∇wf 0].  (11)

In the Braginskii ordering   ∇
r
V and   

r
V⋅∇  terms are one order larger in δ  so in his treatment

they appear on the right side of Eq. (10). Notice that C0 = C0{f0} is the full ion-ion
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collision operator operating on f0, C1 = C1{f1} is the linearized ion-ion collision operator

operating on f1, and the ion-ion collision operator C2 must include a term non-linear in f1 as

well as a linearized term operating on f2 so we can write it as C2 = C1{f2} + C2{f1,f1}.

The non-linear terms C2{f1,f1} are neglected by Mikhailovskii and Tsypin, but we

will find contributions to the parallel and perpendicular viscosity from C2 for ν << Ω .

Equations (9) - (11) could also be solved more generally by continuing to permit ν ~ Ω ,

but the algebra would become more tedious. We have implicitly assumed that δ  ~ ∆  <̃

(m/M)1/2 so an isotropic temperature equilibration term should enter Eq. (11). However,

such a term only leads to an isotropic modification of f, so does not alter  
t
π  and is ignored.

The solution to Eq. (9) is the drifting Maxwellian

  
f 0 = n

M
2πT







3/2
exp −

Mw2

2T







 = n

M
2πT







3/2
exp −

M(
r
v −

r
V)2

2T









 , (12)

and we will construct our full solution for f such that f0 gives the correct density,

temperature, and mean velocity; that is, n = d3vf∫ = d3vf 0∫ , nT = p = (M/3) d3vfw2∫ =

(M/3) d3vf 0w2∫ , and n
r
V= d3vf

r
v∫ = d3vf 0

r
v∫ . We solve Eqs. (10) and (11) by writing

each fj as a sum of a gyro-averaged f j and gyrophase dependent f̃ j pieces by letting fj =

f j+ f̃ j, where f j = <fj> and < f̃ j> = 0 with <...> denoting a gyrophase average. The

gyrophase ϕ  is defined by writing   
r
w =

r
w⊥+w||

r
n  with   

r
w⊥=w⊥ (

r
e1 cosϕ +

r
e2 sinϕ)  where

the unit vectors   
r
e1 and   

r
e2  are orthogonal and normal to  

r
B such that  

r
e1×

r
e2 =

r
n .

Inserting f0 in Eq. (10) results in

  
C1 − Ω

r
w×

r
n ⋅∇wf1= f 0(

Mw2

2T
−

5
2

)
r
w⋅∇lnT, (13)

which upon gyro-averaging gives the equation for f1 to be

C1= f 0(
Mw2

2T
−

5
2

)w||
r
n⋅∇lnT (14)

with C1 = <C1>. The Spitzer problem represented by Eq. (14) can be solved by using an

expansion in orthogonal polynomials that depend on x2 = Mw2/2T as a trial function

solution with its coefficients determined variationally [3, 7, 8]. The solution is of order ∆

and may be written as

f1 = −
2Mq||
5pT

L1
(3/2)(x2 ) −

4
15

L2
(3/2)(x2 )




w||f 0 (15)

where   
r
q =

r
q⊥+ q||

r
n  with   

r
q⊥  and q|| defined by Eq. (3), and where L1

(α)(x2 ) = α + 1− x2

and L2
(α)(x2 ) = [(α + 1)(α + 2) − 2(α + 2)x2 + x4]/2 are generalized Laguerre polynomials.

Then, subtracting Eqs. (13) and (14) and assuming ν << Ω  gives  Ω
r
w×

r
n ⋅∇wf1=

  −f 0[x2 − (5/2)]
r
w⊥ ⋅∇lnT, which has the exact order δ  solution

 
f̃1 = −

f 0
Ω

L1
(3/2)(x2 )

r
w ×

r
n ⋅∇lnT. (16)
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Rather than solve for f̃1 to next order, the order ν/Ω perpendicular heat flux corrections

will be evaluated by a moment approach in the next section. Using Eq. (3), the full

expression for f1 = f1 + f̃1 may be written as

f1 = −
2Mf0
5pT

L1
(3/2)(x2 )

r
q ⋅

r
w −

4
15

L2
(3/2)(x2 )q||w||







(17)

Notice that Eq. (17) gives the heat flow   
r
q = d3vf

r
w(Mw2−∫ 5T)/2 correct to order δ~ ∆ :

 
r
q = (5p/2MΩ)

r
n ×∇T − (125p/32Mν)

r
n
r
n ⋅∇T , (18)

where the first and second terms are the usual [1-3] diamagnetic and parallel collisional heat

fluxes, respectively, and we define   
r
q||= q||

r
n =

r
q⋅

r
n
r
n.

The preceding results are well known [1-6]; however, the solution of Eq. (11) for f2

that follows is new so we present a few more details.  To simplify the right side we first note

that we may neglect viscous heating and temperature equilibration in energy conservation,

  

3n
2

(
∂T
∂t

+
r
V ⋅∇T) + p∇⋅

r
V + ∇⋅

r
q +

t
π .̇∇

r
V =

3mneνei
M

(Te − T), (19)

to obtain
∂f 0
∂t

+
r
V ⋅∇f 0 = −

2x2

3
f 0∇⋅

r
V +

f 0
p

2x2

3
−1







∇⋅

r
q ,

where νei = 4(2π)1/2 e4nelnΛ /3m1/2Te
3/2 is the electron-ion collision frequency with ne

and Te the electron density and temperature. In addition, using f1 gives

  

r
w⋅∇f1 = −

r
w

r
w.̇∇

2Mf0
5pT

L1
(3/2)(x2 )

r
q −

4
15

L2
(3/2)(x2 )

r
q||















and

  
∇wf1 = −

2Mf0
5pT

L1
(3/2)(x2 )

r
q −

4
15

L2
(3/2)(x2 )

r
q||







+
2M2f 0
5pT2

L2
(5/2)(x2 )(

r
q −

4
15

q||
r
n) −

4
15

L2
(3/2)(x2 )

r
q||






⋅
r
w

r
w

where we use the double dot convention   
r
a
r
b.̇

r
c
r
d =

r
b⋅

r
c

r
a⋅

r
d . As a result, f 2 is found by solving

the gyro-average of Eq. (11); namely,

C1{f2} + 〈C2{f1,f1}〉 = 〈
r
w⋅∇f1+ (Mn)−1∇p⋅∇wf1〉 + 〈

∂f 0
∂t

+
r
V⋅∇f 0 +

M
T

f 0
r
w⋅∇

r
V⋅

r
w〉. (20)

Notice that f2 will contain terms of order ∆ 2, δ ∆ , and δ 2. Subtracting Eq. (20) from Eq.

(11) and assuming ν << Ω  gives the equation for f̃ 2 to be

  Ω
r
w ×

r
n ⋅∇wf̃2 + (

r
w

r
w − 〈

r
w

r
w〉)̇.

t
S = 0, (21)

where 
t
S is defined as

t
S =

M
T

f 0∇
r
V − ∇

2Mf0
5pT

L1
(3/2)(x2 )

r
q −

4
15

L2
(3/2)(x2 )

r
q||















+
2Mf0
5p2T

(∇p) L1
(5/2)(x2 )(

r
q −

4
15

q||
r
n) −

4
15

L2
(3/2)(x2 )

r
q||






 . (22)
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We integrate by using
   

r
w

r
w − 〈

r
w

r
w〉= -  

r
w ×

r
n ⋅∇w{[w||

r
n + (1/4)

r
w⊥]

r
w ×

r
n +

r
w ×

r
n[w||

r
n + (1/4)

r
w⊥]}

to find

  f̃ 2 = Ω−1{[w||
r
n + (1/4)

r
w⊥]

r
w ×

r
n +

r
w ×

r
n[w||

r
n + (1/4)

r
w⊥]}̇.

t
S

  
=

1
8Ω

(
r
w

r
w −

1
3

w2
t
I )̇.[

r
n × (

t
S +

t
ST ) ⋅ (

t
I + 3

r
n
r
n) − (

t
I + 3

r
n
r
n) ⋅ (

t
S +

t
ST ) ×

r
n] (23)

where   
t
ST  is the transpose of   

t
S and   

t
I =   

r
e1

r
e1+

r
e2

r
e2 +

r
n
r
n  the unit dyad. The second form for

f̃ 2 is convenient since   
r
n × (

t
S +

t
ST ) ⋅ (

t
I + 3

r
n
r
n) − (

t
I + 3

r
n
r
n) ⋅ (

t
S +

t
ST ) ×

r
n  is symmetric and

traceless with a vanishing 
r
n
r
n component. The solution for f̃ 2 contains terms of order δ 2

and δ ∆ ; the order ν/Ω perpendicular viscosity corrections will be evaluated by a moment

approach in the next section. Our solution differs from that of Mikhailovskii and Tsypin [4-

6] who use a polynomial approximation for f̃ 2 that neglects terms involving L2
(5/2)(x2 ) =

L1
(5/2)(x2 ) + L2

(3/2)(x2 ) so their f̃ 2 only contains L0 (x 2 ) = 1 and L1
(5/2)(x2 ) =

1 + L1
(3/2)(x2 ). This shortcoming only appears when they evaluate the perpendicular

collisional viscosity since they evaluate the gyro-viscosity by a moment approach.

The solution of  Eq. (20) for f2 is more involved since it is a complicated Spitzer

problem. We begin by noting that 〈
r
w

r
w〉− (w2/3)

t
I = w2P2(ξ)[

r
n
r
n− (1/3)

t
I], where ξ  =

w|| /w  and P2(ξ)= (3ξ2−1)/2  is a Legendre polynomial. Using the preceding, Eq. (20)

becomes
C1{f2} = H, (24)

where

H = −〈C2{f1,f1}〉 + 2x2 P2(ξ)[
r
n
r
n − (1/3)

t
I ]̇.∇

r
V + (2f 0 /3p)L1

(1/2)(x2 )∇⋅
r
q

  
−Mw2[

t
I + (3

r
n
r
n −

t
I)P2(ξ)]̇.∇

2f 0
15pT

L1
(3/2)(x2 )

r
q −

4
15

L2
(3/2)(x2 )

r
q||















  
+

4f 0x2

15p2
L1

(5/2)(x2 )(
r
q −

4
15

r
q||) −

4
15

L2
(3/2)(x2 )

r
q||






⋅[

t
I + (3

r
n
r
n −

t
I)P2(ξ)] ⋅∇p

−
2f 0
5p2

L1
(3/2)(x2 )

r
q −

4
15

L2
(3/2)(x2 )

r
q||






⋅∇p. (25)

To solve Eq. (24) we note the self adjointness of C1 and define the functional
Λ = d3whC1{hf 0}− 2∫ d3wh∫ H (26)

which is variational (δΛ  = 0 if hf0 = f2) and maximal (δ2Λ ≤ 0 ). We only require the

portion of f2 that contributes to the parallel viscosity [that is, terms proportional to P2(ξ)];

so we assume a trial function h of the form

h = x2P2(ξ)[a0 + a1L1
(5/2)(x2 )] . (27) 

The coefficients aj are determined variationally by minimizing Λ  (∂Λ /∂a j = 0). To perform

the integrals we use the orthogonality of Legendre and generalized Laguerre polynomials

dξ0
1
∫ Pj(ξ)Pk (ξ)=δ jk /(2k+1)   and  dz0

∞
∫ zαLj

(α)(z)Lk
(α)(z)exp(−z)=δ jkΓ(k+α+1)/k!,
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where δjk is the Kronecker delta function and Γ(k+α+1)  a gamma function. The preceding

are used to show [1, 2, 11, 12]

d∫
3wx2P2(ξ)L j

(5/2)(x2 )C1{x2P2(ξ)Lk
(5/2)(x2 )f 0} = −

9
10

nνBjk = −
9

10
nν

1
3
4

15
32

3
4

205
48

489
128

15
32

489
128

11889
1024





















where  j and k = 0,1, and 2. As a result, we find

d∫
3whC1{hf 0} = −

9
10

nν(a0
2 +

3
2

a0a1+
205
48

a1
2 ) (28)

and

  
2 d∫

3wh[H + C2{f1,f1}] = a0n(3
r
n⋅∇

r
V⋅

r
n − ∇ ⋅

r
V) +

2a0
5T

(3
r
n⋅∇

r
q⋅

r
n − ∇ ⋅

r
q) (29)

+
7a1
5pT

(3
r
q|| −

r
q)⋅∇p

  
−

7a1
5T

[
r
n
r
n − (1/3)

t
I ]̇.{2[3

r
q + (2/5)

r
q||]∇lnT + [3∇

r
q + (4/5)∇

r
q||]}.

Consequently, all that remains to be evaluated are the new q2 and q||
2  contributions to Eq.

(26) from the full non-linear collision term

C2{f1,f1} = ∇w ⋅[γ d3w' g−3∫ (g2
t
I −

r
g
r
g) ⋅ (∇w−∇w' )(f1f1

' )] , (30)

where   γ = 2πe4lnΛ /M2 = 3π1/2T3/2ν/2M3/2n ,  
r
g =

r
w −

r
w' , and f1

' = f1(
r
r,

r
w' , t) .

To evaluate the C2 contributions to Eq. (26) it is convenient to form the following

moments:

d3w
r
w∫

r
wC2{f1,f1} = 2γ d3g d3Gf1f1

' g−3∫ (g2
t
I − 3

r
g
r
g)∫ (31)

and

d3ww2[
r
w∫

r
w − (1/3)w2

t
I]C2{f1,f1} = 2γ d3g d3Gf1f1

' {g−3[G2 + (g2/4)]∫ (g2
t
I − 3

r
g
r
g)∫

  −(4/3g)(G2
t
I − 3

r
G

r
G) + (2

r
G ⋅

r
g/g3)[2

r
G ⋅

r
g
t
I − 3(

r
G

r
g +

r
g

r
G)]}, (32)

where to get these forms we have integrated by parts, interchanged primed and unprimed

variables (and taken one half the sum), and introduced the new velocity variables

  
r
g =

r
w −

r
w' and   

r
G = (

r
w +

r
w' )/2. To evaluate the integrals we introduce the dimensionless

variables   
r
u = (M/T)1/2 r

g/2  and   
r
c = (M/T)1/2

r
G to write

  

f1f1
'

f 0f 0
' =

M
25p2T

(c2+u2 )2 −10(c2+u2 ) + 25 − 4(
r
c⋅

r
u)2[ ] (

r
q⋅

r
c)2 − (

r
q⋅

r
u)2[ ]{

+
1

225
(c2+u2 )4 −28(c2+u2 )3 + 266(c2+u2 )2− 980(c2+u2 )+ 1225 + 16(

r
c⋅

r
u)4[

  
−8(c2+u2 )2(

r
c⋅

r
u)2 + 112(c2+u2 )(

r
c⋅

r
u)2 − 504(

r
c⋅

r
u)2 ] (

r
q ||⋅

r
c)2 − (

r
q||⋅

r
u)2[ ] +

2
15

(c2+u2 )3[

  
−19(c2+u2 )2 + 105(c2+u2 )−175 − 4(c2+u2 )(

r
c⋅

r
u)2 + 36(

r
c⋅

r
u)2 ] r

q⋅
r
c
r
c⋅

r
q ||−

r
q⋅

r
u
r
u⋅

r
q ||[ ]

  
+

4
r
c⋅

r
u

15
(c2+ u2 )2 −10(c2+u2 )[ +35 − 4(

r
c⋅

r
u)2 ] r

q⋅
r
c
r
u⋅

r
q ||−

r
q⋅

r
u
r
c⋅

r
q ||[ ]


 . (33)
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We have performed the tedious six dimensional integrals (31) and (32) both analytically

and with Mathematica to find

  
d3w

r
w∫

r
wC2{f1,f1}=

−3ν
50pT

{(q2
t
I−3

r
q
r
q)+

7
100

(q||
2
t
I−3

r
q||

r
q||)−

7
30

[2q||
2
t
I−3(

r
q
r
q|| +

r
q||

r
q)]} (34)

and

  
d3ww2[

r
w∫

r
w − (1/3)w2

t
I]C2{f1,f1} =

−3ν
50pT

{
121
30

(q2
t
I − 3

r
q
r
q)

  
+

1463
5400

(q||
2
t
I − 3

r
q||

r
q||) −

121
180

[2q||
2
t
I − 3(

r
q
r
q|| +

r
q||

r
q)]} (35)

Using the preceding results we obtain

d∫
3whC2{f1,f1}=−

9Mnν
200p2T

a0(q2−
331
150

q||
2 ) + a1(

89
60

q2−
14833
5400

q||
2 )




 . (36)

From the form of Eq. (28), we see ∂Λ /∂a j = 0 gives two equations coupling a0 and

a1. To form the parallel viscosity only a0 is needed:

  
a0 = −

379Mq2

8900Tp2
+

8837Mq||
2

89000Tp2
−

1025
534ν

[
r
n ⋅∇

r
V ⋅

r
n − (1/3)∇⋅

r
V]−

331
267pν

[
r
n ⋅∇

r
q ⋅

r
n − (1/3)∇⋅

r
q]

  
−

56
445pν

[
r
n ⋅∇

r
q|| ⋅

r
n − (1/3)∇⋅

r
q||]−

952
1335pTν

r
q||⋅∇T

 
−

14
89p2ν

r
q ⋅∇p +

42
89p2ν

r
q||⋅∇p , (37)

where the q2 and q||
2  terms are from C2{f1,f1}.

The complete solution for f to the accuracy we require is given by adding Eqs. (12),

(17), (23) and (27). This solution will be used in the following sections to evaluate the

collisional heat flux and the various viscosities.

III. ION VISCOSITY AND COLLISIONAL PERPENDICULAR ION HEAT FLUX

The collisional contribution to the perpendicular ion heat flux is formally smaller by

ν /Ω than the order ∆  parallel collisional heat flux and the order δ  diamagnetic heat flux. It

is most conveniently evaluated [8,9] by forming the (Mw2/2)  
r
w  moment of Eq. (4), which

using the definition   
r
q = (1 /2) d3vf(Mw2 −∫ 5T)

r
w gives to the two lowest orders

  Ω
r
n ×

r
q + (5p/2M)∇T = d3w(Mw2/ 2)

r
wC1{f1∫ } . (38)

Crossing by   
r
n , substituting in for f1, evaluating the integrals using [13]

d3wx2 r
wC1{x2 r

wf 0∫ } = −(2νp/M)
r
I  ,

recalling that to lowest order   
r
q⊥ = (5p/2MΩ)

r
n ×∇T, and adding in q|| yields the familiar

expressions for the collisional perpendicular, diamagnetic, and parallel ion heat fluxes:
r
q = (5p/2MΩ)

r
n ×∇T − (2pν/MΩ2 )∇⊥T − (125p/32Mν)

r
n
r
n ⋅∇T . (39)

Equation (39) along with  
t
π , evaluated next, and   

r
F, evaluated in the next section, completes

the closure of the energy conservation equation, which in conservation form is
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∂
∂t

3
2

p +
1
2

MnV2





+∇⋅
5
2

p +
1
2

MnV2





r
V+

t
π ⋅

r
V+

r
q





= (en

r
E−

r
F)⋅

r
V+

3mneνei
M

(Te−T) .

It is considerably more involved to evaluate the ion viscosity  
t
π , which is also needed

to close the momentum conservation equation (6), which in conservation form is
∂
∂t

(Mn
r
V)+∇p +∇⋅ (

t
π + Mn

r
V

r
V) = en(

r
E +

1
c

r
V ×

r
B) −

r
F .

Closure requires evaluating the collisional parallel viscosity and collisionless gyro-viscosity,

which can be performed directly using f2 and f̃ 2, respectfully. In addition, the collisional

perpendicular ion viscosity is most conveniently evaluated by a moment approach.

We begin by evaluating the parallel ion viscosity

  

t
π|| = M d3∫ w〈

r
w

r
w −

1
3

w2
r
I 〉f = (

r
n
r
n −

1
3

t
I)(p|| − p⊥ ) . (40)

where p|| = p + d3∫ wf2Mw||
2, p⊥= p + d3∫ wf2Mw⊥

2 /2 , and

p|| − p⊥ = d3∫ ww2P2(ξ)f2 .

Substituting in f2= hf0 with h given by Eq. (27) and using the orthogonality properties of

the Legendre and generalized Laguerre polynomials gives p||− p⊥= 3pa0 /2 so that

p||− p⊥= −
1137Mq2

17800Tp
+

26511 Mq||
2

178000Tp
+

1025p
1068ν

[∇⋅
r
V − 3

r
n ⋅∇

r
V ⋅

r
n]−

476
445Tν

r
q|| ⋅∇T

  
+

331
534ν

[∇⋅
r
q − 3

r
n ⋅∇

r
q ⋅

r
n] +

28
445ν

[∇⋅
r
q|| − 3

r
n ⋅∇

r
q|| ⋅

r
n]−

21
89pν

[
r
q ⋅∇p − 3

r
q||⋅∇p] ,

with   
r
q and 

r
q|| given by their lowest order forms (3) or (18). The first two terms are

proportional to q2 and q||
2  and arise because our δ~ ∆  ordering requires us to retain

C2{f1,f1} in Eq. (24). Like the ∇⋅
r
q|| − 3

r
n ⋅∇

r
q||⋅

r
n  term, they have small coefficients, but are

formally of the same order as the remaining terms previously obtained by Mikhailovskii and

Tyspin [4-6]. Indeed, the   
r
q|| ⋅∇T and q||

2 are exactly of the same form and so can be

combined to write
t
π|| = (

r
n
r
n −

1
3

t
I)

1025
1068ν

[p∇⋅
r
V + (2/5)∇⋅

r
q − 3p

r
n ⋅∇

r
V ⋅

r
n − (6/5)

r
n ⋅∇

r
q ⋅

r
n]




+
319417Mq||

2

890000Tp

  
−

21
89ν

[
r
q ⋅∇lnp − ∇⋅

r
q + 3

r
n ⋅∇

r
q ⋅

r
n − 3

r
q||⋅∇lnp] +

28
445ν

[∇⋅
r
q|| − 3

r
n ⋅∇

r
q|| ⋅

r
n]−

1137Mq⊥
2

17800Tp





 (41)

or, in a more compact double dot notation form similar to Mikhailovskii and Tsypin's,

  

t
π|| =

0.960
ν

(
t
I − 3

r
n
r
n)̇. (p∇

r
V +

2
5
∇

r
q)




+ 0.246(∇
r
q −

r
q∇lnp +

4
15

∇
r
q||)




(
r
n
r
n −

1
3

t
I)

+
M
pT

0.412q||
2 −[ 0.064q2 ](rnr

n −
1
3

t
I) . (42)
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Notice that for our ordering the p  ∇⋅
r
V⊥ ,  ∇⋅

r
q⊥ , and  

r
q⊥ ⋅∇lnp  are larger by L|| / L⊥  than the

remaining terms. However, these terms only appear in the combinations   5p∇⋅
r
V⊥+2∇⋅

r
q⊥

and   p∇⋅
r
q⊥ −

r
q⊥ ⋅∇p which are the same order as all the other terms in   

t
π|| .

The gyro-viscosity is evaluated by using f̃ 2 in Eq. (7):

  

t
πg = M d3∫ w(

r
w

r
w −

1
3

w2
r
I)f̃ 2 = M d3∫ w

r
w

r
wf̃2  . (43)

Inserting Eq. (23) for f̃ 2, using   d
3∫ w

r
w

r
w

r
w

r
w∇Q = ∇ d3∫ w

r
w

r
w

r
w

r
wQ and

d3∫ w wαwβwσwγ f 0 = n(T/M)2[δαβδσγ + δαγδσβ + δασδβγ ] ,

noting L2
(3/2)(x2 ) = L2

(5/2)(x2 ) − L1
(5/2)(x2 ), and using the orthogonality relations for the

Legendre and generalized Laguerre polynomials to show

 
d3∫ w

r
w

r
w

r
w

r
wLj

(5/2)(x2)f 0 = 0 ,

we find the Mikhailovskii and Tyspin [4-6] result for the gyro-viscosity, namely,

  

t
πg=

1
4Ω

r
n × p∇

r
V +

2
5
∇

r
q





+ p∇
r
V +

2
5
∇

r
q





T










⋅

t
I + 3

r
n
r
n( )







−
t
I + 3

r
n
r
n( )⋅ p∇

r
V +

2
5
∇

r
q





+ p∇
r
V +

2
5
∇

r
q





T











×
r
n





 , (44)

with 
r
q given to lowest order by Eq. (18). Equation (44) is the normal definition of the gyro-

viscosity 
t
πg as found from the gyrophase dependent f̃ 2 part of f by assuming ν << Ω .

However, it is not completely diamagnetic since it depends on collisions through q|| due to

the f1 contributions to Eq. (11). As a result, the q|| terms in this form of 
t
πg and Eq. (23)

for f̃ 2 cannot be obtained from the strictly collisionless gyrophase dependent term used to

derive the Hazeltine drift kinetic equation [14, 15]. We also remark that the radial flux of

toroidal angular momentum in the Pfirsch-Schlüter regime is thought to be due to poloidal

variation of 
  
t
πg caused by the poloidal variation of B in a tokamak for δ  << ∆ [7].

To complete the ion description we need to evaluate the collisional portion of the

perpendicular ion viscosity  
t
π⊥ . To this end we use a moment approach to evaluate  

t
π⊥ .

Forming  the   
r
w

r
w moment of Eq. (4) or (8) gives

    Ω(
t
π×

r
n−

r
n×

t
π)+M d3w∫

r
w

r
wC =

t
I[∂p/∂t +∇⋅(p

r
V)]+∇⋅(M d3w∫ f

r
w

r
w

r
w)+p∇

r
V+p(∇

r
V)T,

where the contribution from Cie vanishes and we have neglected higher order terms

involving time and space derivatives of   
t
π  that are small by δ2Ω/ν << 1 (recall that we

assume ν >> ∂/∂t ~ δ2Ω to find f). The trace of the preceding equation is

  ∂p/∂t +∇⋅(p
r
V) +∇⋅[(M/3) d3w∫ fw2 r

w]+(2p/3)∇⋅
r
V = 0 ,

since energy must be conserved in like particle collisions. Combining these two equations to

eliminate ∂p/∂t  gives the desired moment form

 Ω(
t
π×

r
n−

r
n×

t
π)=

t
K (45)
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where   
t
K  is the symmetric and traceless tensor

  

t
K = p∇

r
V+p(∇

r
V)T− (2p/3)

t
I∇⋅

r
V+(2/5)[∇

r
q + (∇

r
q)T− (2/3)

t
I∇⋅

r
q]−M d3w∫

r
w

r
wC.

and we have substituted in for f to find

  ∇⋅{M d3w∫ f1
r
w[

r
w

r
w− (w2/3)

t
I]}= (2/5)[∇

r
q + (∇

r
q)T− (2/3)

t
I∇⋅

r
q] .

From Eq. (45) we see that 
t
K  must have the property 

r
n ⋅

t
K⋅

r
n  = 0. To make this true term by

term we can make the replacement   
t
K →

t
K + (1/ 2)(

t
I−3

r
n
r
n)

r
n⋅

t
K⋅

r
n . As a result,   

t
K  becomes

  

t
K = p∇

r
V +

2
5
∇

r
q





+ p∇
r
V +

2
5
∇

r
q





T
−

2
3

t
I p∇⋅

r
V +

2
5
∇⋅

r
q




−M d3w∫

r
w

r
wC

  
+(

t
I−3

r
n
r
n)[

r
n⋅(p∇

r
V +

2
5
∇

r
q)⋅

r
n −

1
3

(p∇⋅
r
V +

2
5
∇⋅

r
q) −

1
2

M d3w∫ w||
2C], (46)

where the terms not involving C lead to the gyro-viscous contribution and the C terms will

yield the collisional corrections to the perpendicular viscosity. To see this behavior we solve

Eq. (45) to find [15]   
t
π = (1/4Ω)[

r
n×

t
K⋅(

t
I + 3

r
n
r
n) − (

t
I + 3

r
n
r
n)⋅

t
K×

r
n] +

t
π||  or upon using (44),

t
π =

t
π|| +

t
πg +

1
4Ω

[
r
n×

t
Kν⋅(

t
I + 3

r
n
r
n) − (

t
I + 3

r
n
r
n)⋅

t
Kν×

r
n] , (47)

where we define 
t
Kν = −M d3w∫

r
w

r
wC − (

t
I−3

r
n
r
n)(M/2) d3w∫ w||

2C. In writing down the

solution to Eq. (45) we added in a homogeneous solution which can only contain terms

proportional to   
t
I  and   

r
n
r
n and must equal 

t
π||  since no isotropic term is allowed in 

t
π .

To evaluate the collisional terms we first define C = C + C̃  with

C = C1{f2} + 〈C2{f1,f1}〉  and C̃ = C1{f̃2} + C2{f1,f1}− 〈C2{f1,f1}〉 . Using Eqs. (24) and

(25) for C and recalling  〈
r
w

r
w〉 − (w2/3)

t
I = w2P2(ξ)[

r
n
r
n − (1/3)

t
I] we see that

  

t
K0 ≡ −M d3w∫

r
w

r
wC − (

t
I−3

r
n
r
n)(M/2) d3w∫ w||

2C = 0 . (48)

The gyrophase dependent collisional terms are evaluated by using Eq. (34) to find

  
M d3w∫

r
w

r
w〈C2{f1,f1}〉=

3
2

(
r
n
r
n−

1
3

t
I)

r
n
r
n.̇M d3w∫

r
w

r
wC2{f1,f1}

= −
9Mν

100pT
q2−

331
150

q||
2




(
r
n
r
n−

1
3

t
I).

We require the symmetric and traceless combination

  

t
K2 ≡ −M d3w∫

r
w

r
w[C2{f1,f1}− 〈C2{f1,f1}〉]

  
= −

9Mν
50pT

r
q
r
q −

7
30

(
r
q
r
q|| +

r
q||

r
q) −

1
2

q2(
t
I −

r
n
r
n) +

1
2

q||
2

t
I −

31
15

r
n
r
n











, (49)

where   
r
n⋅

t
K2 ⋅

r
n = 0. The tensor   

t
K2 contains all the new quadratic heat flux terms.

Using the self-adjointness of the linearized collision operator the final integral

required is

M d3w∫
r
w

r
wC1{f̃2} = M d3w∫ (f̃ 2/f 0 )C1{

r
w

r
wf 0} (50)

Using the procedure in Appendix C of Ref. 13 we write
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C1{
r
w

r
wf 0} = J(x)(

r
w

r
w−

1
3

w2
t
I) (51)

with

J(x) = −
9π1/2νf 0

21/2 x3
1−

3
2x2







E(x) +
3E' (x)

2x






(52)

and E(x) = 2π−1/2 dt exp(−t2 )0
∞
∫  the error function and E'(x) its derivative. Using the

preceding for a symmetric and traceless tensor  

t
Tk
α  gives

  

t
Tk
α .̇ d3wLk

(α)(x2 )∫
r
w

r
wC1{

r
w

r
wf 0}= (2 /15)

t
Tk
α d3wLk

(α)(x2 )∫ w4J(x) (53)

=
1
5

t
Tk
α d3wLk

(α)(x2 )∫
r
w

r
w−

1
3

w2
t
I




.̇C1{

r
w

r
wf 0} = −

12nT2ν
5M2

t
Tk
α

1 k = 0, α
3/4 k = 1, α = 5/ 2

−9/32 k = 2, α = 3/ 2






since

dxx6J(x)Lk
(α)(x2 )0

∞
∫ = −

9nν
8π

M
2T







3/2 1 k = 0 α
3/4 k = 1 α = 5/2

−9/32 k = 2 α = 3/2






(54)

Moreover, again using Eqs. (51) and (52) we find

d3wf0
−1(∇

r
Q)∫ [

r
w

r
w− (1/3)w2

t
I ]̇.C1{

r
w

r
wf 0} = (2/3) d3ww4f 0

−1J(x)∇
r
Q∫

  = (2n/3)∇[ d3ww4J(x)n−1f 0
−1

r
Q∫ ] + (2ν/3M)(∇T) d3w

r
Qw2(∂/∂x)[x3J(x)∫ /νf 0 ] , (55)

where to evaluate the final integral we also need

ν dxx4Lk
(α)(x2 )f 0(∂/∂x)[x3J(x)/νf 0 ]0

∞
∫ = −

27nν
16π

M
2T







3/2 1 k = 0 α
−5/4 k = 1 α = 5/2
−5/32 k = 2 α = 3/2






. (56)

Inserting Eq. (23) into Eq. (50) and using Eqs. (53)-(56) to perform the integrals yields

  

t
K1 ≡ −M d3w∫

r
w

r
wC1{f̃2} =

3pν
10Ω

r
n×

t
W⋅(

t
I+3

r
n
r
n) − (

t
I+3

r
n
r
n)⋅

t
W×

r
n[ ] (57)

where it is convenient to define 
t

W  as a symmetric, traceless tensor with  
r
n ⋅

t
W⋅

r
n  = 0:

  p
t

W =
t

W∗ +
t

W∗
T + (

t
I−3

r
n
r
n)

r
n ⋅

t
W∗⋅

r
n − (

t
I−

r
n
r
n)

t
I:

t
W∗

where
t

W∗= p∇
r
V+

2
5
∇

r
q −

3(p∇
r
q −

r
q∇p)

10p
−

(3p∇
r
q|| + 5

r
q||∇p)

100p
−

(90
r
q −13

r
q||)∇T

400T
 . (58)

The preceding results allow us to use Eq. (47) to form the full collisional

perpendicular viscosity. To do so, we define the full ion viscosity ast
π =

t
π|| +

t
πg +

t
π⊥ =

t
π|| +

t
πg +

t
π⊥1 +

t
π⊥2 (59)

where the individual contributions to 
t
π⊥  are given by

  

t
π⊥k =

1
4Ω

[
r
n×

t
Kk⋅(

t
I + 3

r
n
r
n) − (

t
I + 3

r
n
r
n)⋅

t
Kk ×

r
n] (60)

with the 
t
Kk  for k = 1 and 2 given by Eqs. (49) and (57) (recall 

t
K0 = 0). The subscript "1"

denotes terms in 
t
π⊥  from the linearized collision operator, while the "2" subscript denotes
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the new terms that are quadratic in the heat fluxes   
r
q and  

r
q|| from the non-linear collision

operator. Because   
t
I  and  

r
n
r
n in   

t
K2 do not contribute, we find the new terms in the

collisional perpendicular viscosity to be

  

t
π⊥2 = −

9Mν
200pTΩ

[
r
n×

r
q(

r
q +

31
15

r
q||) − (

r
q +

31
15

r
q||)

r
q×

r
n] (61)

These terms quadratic in the heat fluxes   
r
q and  

r
q|| were not obtained by previous treatments.

The lowest order forms of Eq. (3) or (18) are to be employed for   
r
q and   

r
q|| here and

elsewhere in   
t
π⊥ .

Inserting Eq. (57) into Eq. (60) and using   
r
n ⋅

t
W⋅

r
n  = 0 =   

t
W:

r
I  to show that

r
n ×

t
W×

r
n  = (

t
I−

r
n
r
n)⋅

t
W⋅(

t
I−

r
n
r
n) gives the form for  

t
π⊥1 to be

t
π⊥1 = −

3νp
10Ω2

[
t

W + 3(
r
n

r
n⋅

t
W +

t
W⋅

r
n

r
n)] .

Ignoring homogeneous terms proportional  
t
I  and/or   

r
n
r
n that are ν/Ω  corrections to the   

t
π||

of Eqs. (41) or (42), completes the description for the viscosity giving

  

t
π⊥1 = −

3ν
10Ω2

[
t

W∗+
t

W∗
T +3

r
n(

r
n⋅

t
W∗+

t
W∗⋅

r
n) +3(

r
n⋅

t
W∗+

t
W∗⋅

r
n)

r
n)] (62)

or using Eq. (58)
t
π⊥1 = −

3ν
10Ω2

p∇
r
V+

2
5
∇

r
q + (p∇

r
V+

2
5
∇

r
q)T−

3
10p

p∇
r
q −

r
q∇p + (p∇

r
q −

r
q∇p)T[ ]




  
−

1
100p

3p∇
r
q|| + 5

r
q||∇p + (3p∇

r
q|| + 5

r
q||∇p)T[ ]− 1

40)T
(90

r
q −13

r
q||)∇T+ (∇T)(90

r
q −13

r
q||)[ ]

  
+3

r
n

r
n ⋅ p∇

r
V+

1
10

∇
r
q −

3
100

∇
r
q||







+ p∇
r
V+

1
10

∇
r
q −

3
100

∇
r
q||






⋅
r
n





(63)

  
+3

r
n ⋅ p∇

r
V+

1
10

∇
r
q −

3
100

∇
r
q||







+ p∇
r
V+

1
10

∇
r
q −

3
100

∇
r
q||






⋅
r
n





r
n

  
+

3q||
4p

[
r
n∇p + (∇p)

r
n] +

9
10p

[
r
n
r
q +

r
q
r
n −

1
3

q||
r
n
r
n]

r
n ⋅∇p

−
231q||
400T

[
r
n∇T + (∇T)

r
n]−

27
40T

[
r
n
r
q +

r
q
r
n −

13
45

q||
r
n
r
n]

r
n ⋅∇T


 .

This portion of 
t
π⊥  does not agree in detail with the result of Mikhailovskii and Tsypin [4-

6] because they used an approximate form for f̃ 2, while we use the exact result of Eq. (23).

Some of the discrepancies are as follows: (1/10)  ∇
r
q||  not -0.27  ∇

r
q|| ,  

r
q||∇p/6 rather than

zero, and [  
r
q− (13/90)

r
q||]∇T  not (8/3)  

r
q−0.27

r
q||( )∇T . They occur because Mikhailovskii

and Tsypin neglect x4 and x6 terms in the coefficients of   ∇
r
q|| ,  

r
q||∇p, and  

r
q∇T and   

r
q||∇T ,

respectively, in Eq. (22) for 
t
S in f̃ 2.

The ion description is now complete except for the momentum exchange term   
r
Fthat

is evaluated in the next section when we consider the closure for the electrons.
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IV. ELECTRON FORMULATION

The treatment of the electrons shares many similarities with that of the ions so fewer

details will be presented. It is included for completeness since electrons were not considered

in Refs. [4-6]. Only, the perpendicular viscosity will be assumed negligible.

Introducing the shifted electron velocity variable   
r
w =

r
v −

r
Ve  with   n

r
Ve = d3∫ v

r
vf e,

n = ne = d3∫ vf e ,   ∂n/∂t +∇⋅(n
r
Ve ) = 0, and using electron momentum conservation

  
mn(

∂
r
Ve
∂t

+
r
Ve ⋅∇

r
Ve ) + en(

r
E +

1
c

r
Ve ×

r
B) = −∇pe − ∇ ⋅

t
πe +

r
F (64)

with pe = nTe = m d3∫ wfew2/3,   
t
πe = m d3∫ w[

r
w

r
w −

r
I(w2/3)]f e, and   

r
F = m d3v

r
vCei∫ ,

gives the kinetic equation for the electron distribution function fe to be

Ωe
r
w ×

r
n ⋅∇wf e + Ce = [

r
w⋅∇f e + (mn)−1(∇pe −

r
F)⋅∇wf e] +

[
∂f e
∂t

+
r
Ve ⋅∇f e −

r
w⋅∇

r
Ve ⋅∇wf e] + (mn)−1(∇⋅

t
πe )⋅∇wf e . (65)

Electron quantities are denoted by subscript "e" to distinguish then from the unsubscripted

ion quantities, with Ωe= eB/mc. The collision operator Ce = Cee + Cei  is the sum of like

and unlike particle contributions, with Cei = L + D. The Lorentz operator L is given by

L{f e} = [3(2π)1/2(Te/m)3/2νei/4]∇w ⋅ (∇w∇ww ⋅∇wf e ). (66)

The operator D is a small correction to pitch angle scattering associated with the difference

in the mean flows between the ions and electrons. To lowest order it is given by

  D{f e}≡Cei−L = −[3(2π)1/2(Te/m)3/2νei/4]∇w⋅[(
r
V −

r
Ve ) ⋅∇w∇w∇ww ⋅∇wf e +...], (67)

where the terms not shown are mass ratio corrections which lead to isotropic ion-electron

equilibration modifications that do not alter   
t
πe , and  

r
V  is the ion mean velocity.

To determine fe it is convenient to expand using f e= f 0e+ f1e+ f2e +... We first

solve the lowest order equation
Ωe

r
w ×

r
n ⋅∇wf 0e + C0ee + L0ei = 0

to find that f0e is a Maxwellian drifting at the mean velocity of the electrons, namely,

  
f 0e = n

m
2πTe











3/2

exp −
m(

r
v −

r
Ve )2

2Te









 . (68)

Notice that C0ee = C0ee{f 0e}= 0 and L0 = L{f 0e}= 0.

To next order

  Ωe
r
w ×

r
n ⋅∇wf1e + C1ee + L1= [

r
w⋅∇f 0e + (mne )−1(∇pe−

r
F)⋅∇wf 0e ]− D0, (69)

where L1=L{f1e}, D0 = D{f 0e}, and C1ee= C1ee{f1e} is the linearized electron-electron

collision operator. To find the lowest order gyrophase dependent portion of f1e we need

only solve
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Ωe

r
w ×

r
n ⋅∇wf1e = f 0e(

mw2

2Te
−

5
2

)
r
w⊥ ⋅∇lnT

to obtain

  
f̃1e = −

f 0e
Ωe

(xe
2 −

5
2

)
r
w ×

r
n ⋅∇lnTe (70)

where xe
2 = mw2/2Te .

The equation for gyrophase independent portion of f1e is more involved since

  F|| =
r
n ⋅

r
F  and D0 must be retained when solving its lowest order form

  
C1ee + L1= f 0e(xe

2 −
5
2

)w||
r
n ⋅∇lnT + w||F||f 0e/pe − D0, (71)

where C1ei = L1+ D0 and  D0 = [3(2π)1/2(Te/m)1/2νei/2w3](
r
V −

r
Ve ) ⋅

r
wf 0e. We solve

for f1e  variationally since C1ee and L1 are self-adjoint. Using a trial function that does not

alter the mean flow,

f1e = [b1L1
(3/2)(xe

2 ) + b2L2
(3/2)(xe

2 )]w||f 0e, (72)

we find the variationally determined coefficients to be

b1 =
12(373 + 389 2)
16447 + 15912 2











m
Te

(V|| − V||e ) +
56995 + 29360 2
32984 + 31824 2









νei

−1r
n ⋅∇lnTe

and

  
b2 =

12(4 2 − 2)
505 + 604 2











m
Te

(V|| − V||e ) −
30(23 + 4 2)
505 + 604 2









νei

−1r
n ⋅∇lnTe .

Knowing f1e we can evaluate the electron heat flux   
r
qe = d3vf e

r
w(mw2−∫ 5Te )/2to

lowest order to find the diamagnetic and parallel contributions of Braginskii [1, 2]:
r
qe = −(5pe /2mΩe )

r
n ×∇Te− 3.162(pe/mνei )

r
n
r
n ⋅∇Te− 0.711pe(

r
V|| −

r
V||e ). (73)

A moment approach can be used to evaluate the collisional perpendicular heat flux.

Accounting for momentum exchange and unlike collisions the electron version of (38) is

Ωe
r
qe ×

r
n + (5pe /2m)∇Te = Te d3w

r
w{xe

2C1ee∫ + [xe
2− (5/2)](L1+ D0 )} ,

where the momentum exchange term   
r
F gives rise to the (5/2)(L1+D0) terms. Carrying out

the integrals, noting that only f̃1e  is required, and adding in   
r
q||e gives the standard

Braginskii result

  
r
qe = −(5pe /2mΩe )

r
n ×∇Te− 3.162(pe/mνei )

r
n
r
n ⋅∇Te− 0.711pe(

r
V|| −

r
V||e )

− (4.66νeipe/mΩe
2 )∇⊥Te − (3peνei /2Ωe )

r
n × (

r
V−

r
Ve ) . (74)

The preceding is to be inserted in the electron energy balance equation

    
3n
2

(
∂Te
∂t

+
r
Ve⋅∇Te ) + pe∇⋅

r
Ve + ∇⋅

r
qe +

t
πe .̇∇

r
Ve = −

3mnνei
M

(Te− T) + (
r
V−

r
Ve )⋅

r
F (75)



17

or in conservation form

  

∂
∂t

3
2

pe +
1
2

mnVe
2





+∇⋅
5
2

pe +
1
2

mnVe
2





r
Ve +

t
πe⋅

r
Ve +

r
qe








  
= −en

r
E ⋅

r
Ve +

r
F ⋅

r
V−

3mnνei
M

(Te−T) .

In addition, we must evaluate the lowest order momentum exchange term using

  

r
F = m d3w

r
wC1ei∫ = m d3w

r
w[L1∫ + D0] = mnνei (

r
V −

r
Ve ) −

r
F

*
with

r
F

*
=

3π1/2Te
3/2νei

(2m)1/2
d3w
w3∫ f1e

r
w

  = (3nνei /2Ωe )
r
n ×∇Te+ 0.71n

r
n
r
n ⋅∇Te + 0.49mnνei (

r
V||−

r
V||e ) (76)

to find the Braginskii expressions for the friction and thermal force

       
r
F= mnνei[(

r
V⊥−

r
V⊥e ) + 0.51(

r
V||−

r
V||e )]− (3nνei /2Ωe )

r
n ×∇Te− 0.71 n

r
n
r
n ⋅∇Te  . (77)

This result for the momentum exchange between electrons and ions is to be used in both the

electron and ion conservation equations. Higher order corrections are not required since

|
r
F ⋅

r
V| ~|∇⋅

r
qe| for  

r
qe the collisional perpendicular heat flux.

To evaluate the electron viscosity to complete the closure of the electron momentum

and energy equations it is convenient to use the lowest order expression for   
r
qeand define

r
q

*
= 1.581(pe/mνei )

r
n
r
n ⋅∇Te − 0.0807pe(V|| − V||e )

r
n  (78)

to obtain the form

f1e = −(2mf 0e/5peTe )[L1
(3/2)(xe

2 )
r
q + L2

(3/2)(xe
2 )

r
q

*
] ⋅

r
w . (79)

Notice that our electron orderings implicitly assume  
r
qe/peve ~

r
Ve/ve ~ ρe/L⊥~ λ

r
n ⋅∇lnTe

<< λ/L||  so that parallel electron temperature variations are weak and an adiabatic electron

response is allowed, where λ  is the mean free path, ve = (2Te/m)1/2  and ρe = ve /Ωe .

To evaluate the parallel electron viscosity we need to find f2e by solving the lowest

order gyroaveraged equation

  
C2ee+ L2 = 〈

r
w⋅∇f1e + (mn)−1(∇pe−

r
F)⋅∇wf1e 〉 + 〈

∂f 0e
∂t

+
r
Ve ⋅∇f 0e−

r
w⋅∇

r
Ve ⋅∇wf 0e 〉, (80)

where L2 = L{f2e} and C2ee = C1ee{f2e} + 〈C2ee{f1e, f1e}〉  with 〈C2ee{f1e, f1e}〉  the full

gyroaveraged non-linear electron-electron collision operator acting on f1e and C1ee the

linearized collision operator acting on f2e. Notice that D1 can be neglected because the

flows are small compared to the electron thermal speed and we are not interested in the

isotropic equilibration contributions to f2e. The self-adjointness of C1ee{f2e} and

L2 = L{f2e} allows us to solve for f2e variationally. The technique is the same as for the
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ions except that L2  must be retained. As for the ions, we only need terms proportional to

P2(ξ)  to form the parallel viscosity so we need only consider

f2e /f 0e = xe
2P2(ξ)[c0 + c1L1

(5/2)(xe
2 )]. (81)

Solving as for the ions we find

  

t
π||e = m d3∫ w〈

r
w

r
w −

1
3

w2
r
I 〉f2e = (

r
n
r
n −

1
3

t
I)(p||e − p⊥e ) (82)

with

p||e − p⊥e = d3∫ ww2P2(ξ)f2e =
3
2

pc0 =
3m

4430200peTe









 (6056+24169 2)(3q||e

2 − qe
2 )[

  
+5(32854 2 − 26035)

r
qe⋅

r
q

*
+

105
32

(16433 2 − 36)q
*
2 

  
+ 42

417 2 − 439
22151νei









 ∇⋅(

r
qe−

r
q

*
)[

  
−3

r
n ⋅∇(

r
qe−

r
q

*
)⋅
r
n + (2

r
qe−

r
q

*
− 6

r
q||e+ 3

r
q||*

) ⋅∇lnTe −(
r
qe − 3

r
q||e ) ⋅ (∇lnpe− pe

−1
r
F)]

+
5
6

23479 2 −13775
22151νei









 pe∇⋅

r
Ve +

2
5
∇⋅

r
qe− 3pe

r
n ⋅∇

r
Ve ⋅

r
n −

6
5

r
n ⋅∇

r
qe ⋅

r
n





. (83)

The preceding can be written more compactly using double dot notation as

  
p||e− p⊥e =

0.731
νei

(
t
I − 3

r
n
r
n)̇. (pe∇

r
Ve{ +

2
5
∇

r
qe ) − 0.391[

r
qe(∇lnpe− pe

−1
r
F) − ∇(

r
qe−

r
q

*
)

  
−(2

r
qe−

r
q

*
)∇lnTe}+

m
peTe

0.027(3q||e
2 − qe

2 )[ + 0.069
r
qe⋅

r
q

*
+ 0.052q∗

2 ] . (84)

In p||e− p⊥e , the lowest order expressions for 
r
qeand 

r
q||eare to be used. The preceding

result for 
t
π||e  assumes the weak parallel variation of the electron temperature ordering

r
qe/peve ~

r
Ve/ve ~ ρe/L⊥~ λ

r
n ⋅∇lnTe. However, if 

r
n ⋅∇lnTe ~ 1/ L|| then we may adopt

this strong parallel variation of the electron temperature ordering   λ / L|| ~
r
qe/peve >>

  ρe/L⊥~
r
Ve/ve  to simplify   

t
π||e  considerably.

The evaluation of the electron gyro-viscosity is similar to that for the ions since f̃ 2e

satisfies

Ωe
r
w ×

r
n ⋅∇wf̃2e − (

r
w

r
w − 〈

r
w

r
w〉)̇.

t
Se = 0 (85)

with

  

t
Se =

m
Te

f 0e∇
r
Ve − ∇

2mf0e
5peTe

L1
(3/2)(xe

2 )
r
q + L2

(3/2)(xe
2 )

r
q

*[ ]







  
+

2mf0e
5pe

2Te
(∇pe −

r
F) L1

(5/2)(xe
2 )

r
q + L2

(5/2)(xe
2 )

r
q

*[ ]. (86)

The preceding forms are similar to Eqs. (21) and (23) with the result that

  f̃ 2e = −Ωe
−1{[w||

r
n + (1/4)

r
w⊥]

r
w ×

r
n +

r
w ×

r
n[w||

r
n + (1/4)

r
w⊥]}̇.

t
Se  . (87)

 .
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Forming the electron gyroviscosity, 
  
t
πge = m d3∫ w

r
w

r
wf̃2e , by the same procedure used for

the ions yields

t
πge=

−1
4Ωe

r
n × pe∇

r
Ve +

2
5
∇

r
qe







+ pe∇
r
Ve +

2
5
∇

r
qe







T










⋅

t
I + 3

r
n
r
n( )







  

−
t
I + 3

r
n
r
n( )⋅ pe∇

r
Ve +

2
5
∇

r
qe







+ pe∇
r
Ve +

2
5
∇

r
qe







T











×
r
n





 . (88)

The electron parallel and gyro-viscosities are needed for the energy and momentum balance

equations, where the conservation form of the electron momentum balance equation is

  

∂
∂t

(mne
r
Ve )+∇pe +∇⋅ (

t
πe + mne

r
Ve

r
Ve ) = −ene(

r
E +

1
c

r
Ve ×

r
B) +

r
F  .

The combined ion-electron short mean free path closure is now complete. Only

perpendicular electron viscosity has been neglected.

IV. DISCUSSION

Our short mean free path description of magnetized plasmas considers the normally

more interesting situation when the pressure times the mean flow velocity is allowed to be

comparable to the diamagnetic and collisional parallel heat flows; and the mean flow is on

the order of the diamagnetic and magnetic drift speeds: the drift ordering. It removes

shortcomings of and extends the pioneering work by Mikhailovskii and Tsypin [4-6] who

first realized the limitations of the Braginskii [1-2] and Robinson and Bernstein [3]

formulations which are only valid for flows on the order of the ion thermal speed (often

referred to as an MHD ordering). As in all drift ordering treatments we assume the collision

frequency to be small compared to the cyclotron frequency. However, we permit the

perpendicular scale lengths to be much less than the parallel ones as is the case in many

magnetized plasma applications. As a result, our description is valid for both turbulent and

collisional transport treatments.

Our treatment of the ions finds additional terms in the parallel viscosity, Eq. (42),

that are quadratic in the heat flux and were missed by earlier treatments which neglected the

full non-linear collision operator term C2{f1,f1} in the kinetic equation, Eqs. (24) and (25),

for f2. Quadratic heat flux terms also enter the perpendicular viscosity 
t
π⊥ =

t
π⊥1 +

t
π⊥2,

which we evaluate by a moment approach using Eq. (45) that thereby involves moments of

the non-linear collision operator C2{f1,f1}. As a result, our 
t
π⊥2  term is new and not

contained in previous treatments. Furthermore, our result for 
t
π⊥1 differs from that of

Mikhailovskii and Tyspin [4-6] since they truncate their Laguerre polynomial expansion

after only two terms while we keep the full gyrophase dependent expression for f̃ 2. Their
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truncated approximation for f̃ 2 does not affect their gyro-viscosity 
  
t
πg since they evaluate it

from a moment approach, equivalent to (48), that only requires f1. The complete description

for the ions consists of the conservation of number, ion momentum, and ion energy

equations with the ion heat flux   
r
q given by Eq. (39), with the ion viscosity

t
π =

t
π|| +

t
πg +

t
π⊥1 +

t
π⊥2  given by Eqs. (41) or (42), (44), (61) and (63), and with the

momentum exchange between the ions and electrons,  
r
F,  given by Eq. (77). Equations (58)

and (61) are a more compact version of Eq. (63).

Our evaluation of the electron parallel and gyro-viscosities is new since electrons

were not considered in earlier drift ordering work. Of course, in the large flow limit our

electron (and ion) results agree with Braginskii [1-2] and Robinson and Bernstein [3]. We

have not evaluated the perpendicular electron viscosity since it is small and unlikely to be of

interest. The calculation could be performed by the simliar procedure as used for the ions.

Our complete description of the electrons is the conservation of electron momentum and

energy equations with the electron heat flux   
r
qe given by Eq. (74), the electron viscosity

t
π =

t
π||e +

t
πge given by Eqs. (82), (83) or (84) and (88), plus the momentum exchange term

of Eq. (77) and the expression for 
r
q

*
 as given by Eq. (78). We have assumed singly

charged ions and invoked quasi-neutrality so that the electron-electron collision frequency

equals the electron-ion collision frequency νei .
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