5,091 research outputs found

    The Hyperfine Splittings in Bottomonium and the Bq(q=n,s,c)B_q (q=n,s,c) Mesons

    Get PDF
    A universal description of the hyperfine splittings (HFS) in bottomonium and the Bq(q=n,s,c)B_q (q=n,s,c) mesons is obtained with a universal strong coupling constant αs(μ)=0.305(2)\alpha_s(\mu)=0.305(2) in a spin-spin potential. Other characteristics are calculated within the Field Correlator Method, taking the freezing value of the strong coupling independent of nfn_f. The HFS M(B)M(B)=45.3(3)M(B^*)- M(B)=45.3(3) MeV, M(Bs)M(Bs)=46.5(3)M(B_s^*) - M(B_s)=46.5(3) MeV are obtained in full agreement with experiment both for nf=3n_f=3 and nf=4n_f=4. In bottomonium, M(Υ(9460))M(ηb)=70.0(4)M(\Upsilon(9460))- M(\eta_b)=70.0(4) MeV for nf=5n_f=5 agrees with the BaBar data, while a smaller HFS, equal to 64(1) MeV, is obtained for nf=4n_f=4. We predict HFS M(Υ(2S))M(ηb(2S))=36(1)M(\Upsilon(2S))-M(\eta_b(2S))=36(1) MeV, M(Υ(3S))M(η(3S))=27(1)M(\Upsilon(3S))- M(\eta(3S))=27(1) MeV, and M(Bc)M(Bc)=57.5(10)M(B_c^*) - M(B_c)= 57.5(10) MeV, which gives M(Bc)=6334(1)M(B_c^*)=6334(1) MeV, M(Bc(21S0))=6865(5)M(B_c(2 {}^1S_0))=6865(5) MeV, and M(Bc(2S3S1))=6901(5)M(B_c^*(2S {}^3S_1))=6901(5) MeV.Comment: 5 pages revtex

    Spectral geometry as a probe of quantum spacetime

    Full text link
    Employing standard results from spectral geometry, we provide strong evidence that in the classical limit the ground state of three-dimensional causal dynamical triangulations is de Sitter spacetime. This result is obtained by measuring the expectation value of the spectral dimension on the ensemble of geometries defined by these models, and comparing its large scale behaviour to that of a sphere (Euclidean de Sitter). From the same measurement we are also able to confirm the phenomenon of dynamical dimensional reduction observed in this and other approaches to quantum gravity -- the first time this has been done for three-dimensional causal dynamical triangulations. In this case, the value for the short-scale limit of the spectral dimension that we find is approximately 2. We comment on the relevance of these results for the comparison to asymptotic safety and Horava-Lifshitz gravity, among other approaches to quantum gravity.Comment: 25 pages, 6 figures. Version 2: references to figures added, acknowledgment added

    A practical view of fine-mapping and gene prioritization in the post-genome-wide association era

    Get PDF
    Over the past 15 years, genome-wide association studies (GWASs) have enabled the systematic identification of genetic loci associated with traits and diseases. However, due to resolution issues and methodological limitations, the true causal variants and genes associated with traits remain difficult to identify. In this post-GWAS era, many biological and computational fine-mapping approaches now aim to solve these issues. Here, we review fine-mapping and gene prioritization approaches that, when combined, will improve the understanding of the underlying mechanisms of complex traits and diseases. Fine-mapping of genetic variants has become increasingly sophisticated: initially, variants were simply overlapped with functional elements, but now the impact of variants on regulatory activity and direct variant-gene 3D interactions can be identified. Moreover, gene manipulation by CRISPR/Cas9, the identification of expression quantitative trait loci and the use of co-expression networks have all increased our understanding of the genes and pathways affected by GWAS loci. However, despite this progress, limitations including the lack of cell-type- and disease-specific data and the ever-increasing complexity of polygenic models of traits pose serious challenges. Indeed, the combination of fine-mapping and gene prioritization by statistical, functional and population-based strategies will be necessary to truly understand how GWAS loci contribute to complex traits and diseases

    Optical spectrum of the post-AGB star HD56126 in the region 4010-8790 AA

    Full text link
    We studied in detail the optical spectrum of the post-AGB star HD56126 (IRAS07134+1005). We use high resolution spectra (R=25000 and 60000) obtained with the echelle spectrographs of the 6-m telescope. About one and a half thousand absorptions of neutral atoms and ions, absorption bands of C_2, CN, and CH molecules, and interstellar bands (DIBs) are identified in the 4010 to 8790 AA wavelength region, and the depths and radial velocities of these spectral features are measured. Differences are revealed between the variations of the radial velocities measured from spectral features of different excitation. In addition to the well-known variability of the Halpha profile, we found variations in the profiles of a number of FeII, YII, and BaII lines. We also produce an atlas of the spectrum of HD56126 and its comparison staralpha Per. The full version of the atlas is available in electronic form from Web-address: http://www.sao.ru/hq/ssl/Atlas/Atlas.htmlComment: 42 pages, 6 figure

    Two Point functions in 4-d Dynamical Triangulation

    Get PDF
    Abstract In the dynamical triangulation model of 4D Euclidean quantum gravity we measure two-point functions of the scalar curvature as a function of the geodesic distance. To get the correlations it turns out that we need to subtract a squared one-point function which, although this seems paradoxical, depends on the distance. At the transition and in the elongated phase we observe a power law behaviour, while in the crumpled phase we cannot find a simple function to describe it

    The ratio of decay widths of X(3872) to ψγ \psi^{\prime}\gamma and J/ψγ J/\psi\gamma as a test of the X(3872) dynamical structure

    Get PDF
    Radiative decays of X(3872) with JPC=1++J^{PC}=1^{++} are studied in the coupled-channel approach, where the ccˉc\bar c states are described by relativistic string Hamiltonian, while for the decay channels DDDD^* a string breaking mechanism is used. Within this method a sharp peak and correct mass shift of the 23P12 {}^3P_1 charmonium state just to the D0D0D^0D^{*0} threshold was already obtained for a prescribed channel coupling to the DDDD^* decay channels. For the same value of coupling the normalized wave function (w.f.) of X(3872) acquires admixture of the 13P11 {}^3P_1 component with the w.f. fraction c1=0.153(θ=8.8c_1=0.153 (\theta=8.8^\circ), which increases the transition rate Γ(X(3872)J/ψγ)\Gamma(X(3872)\rightarrow J/\psi\gamma) up to 50-70 keV, making the ratio R=B(X(3872)ψγ)B(X(3872)J/ψγ)=0.8±0.20(th)R=\frac{\mathcal{B}(X(3872)\rightarrow \psi^{\prime}\gamma)}{\mathcal{B}(X(3872)\rightarrow J/\psi \gamma)}=0.8\pm 0.20 (th) significantly smaller, as compared to R5R\simeq 5 for X(3872) as a purely 23P12 {}^3P_1 state.Comment: 14 pages,2 Table

    New Spectroscopic Observations of the Post-AGB Star V354Lac=IRAS22272+5435

    Full text link
    The strongest absorption features with the lower-level excitation potentials χlow<1\chi_{\rm low}<1 eV are found to be split in the high-resolution optical spectra of the post-AGB star V354 Lac taken in 2007--2008. Main parameters, Teff_{eff}=5650 K, logg\log g=0.2, ξt\xi_t=5.0 km/s, and the abundances of 22 chemical elements in the star's atmosphere are found. The overabundance of the ss-process chemical elements (Ba, La, Ce, Nd) in the star's atmosphere is partly due to the splitting of strong lines of the ions of these metals. The peculiarities of the spectrum in the wavelength interval containing the LiI λ\lambda 6707 \AA{} line can be naturally explained only by taking the overabundances of the CeII and SmII heavy-metal ions into account. The best agreement with the synthetic spectrum is achieved assuming ϵ\epsilon(LiI)=2.0, ϵ\epsilon(CeII)=3.2, and ϵ\epsilon(SmII)=2.7. The velocity field both in the atmosphere and in the circumstellar envelope of V354 Lac remained stationary throughout the last 15 years of our observations.Comment: 16 pages, 6 figures, 2 table

    Spectroscopic Study of IRAS 19285+0517(PDS 100): A Rapidly Rotating Li-Rich K Giant

    Get PDF
    We report on photometry and high-resolution spectroscopy for IRAS 19285+0517. The spectral energy distribution based on visible and near-IR photometry and far-IR fluxes shows that the star is surrounded by dust at a temperature of TdT_{\rm {d}} \sim 250 K. Spectral line analysis shows that the star is a K giant with a projected rotational velocity vsiniv sin i = 9 ±\pm 2 km s1^{-1}. We determined the atmospheric parameters: TeffT_{\rm {eff}} = 4500 K, log gg = 2.5, ξt\xi_{t} = 1.5 km s1^{-1}, and [Fe/H] = 0.14 dex. The LTE abundance analysis shows that the star is Li-rich (log ϵ\epsilon(Li) = 2.5±\pm0.15), but with essentially normal C, N, and O, and metal abundances. Spectral synthesis of molecular CN lines yields the carbon isotopic ratio 12^{12}C/13^{13}C = 9 ±\pm3, a signature of post-main sequence evolution and dredge-up on the RGB. Analysis of the Li resonance line at 6707 \AA for different ratios 6^{6}Li/7^{7}Li shows that the Li profile can be fitted best with a predicted profile for pure 7^{7}Li. Far-IR excess, large Li abundance, and rapid rotation suggest that a planet has been swallowed or, perhaps, that an instability in the RGB outer layers triggered a sudden enrichment of Li and caused mass-loss.Comment: To appear in AJ; 40 pages, 9 figure
    corecore