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Abstract 

In the dynamical triangulation model of 4D Euclidean quantum gravity we measure two-point 
functions of the scalar curvature as a function of the geodesic distance. To get the correlations 
it turns out that we need to subtract a squared one-point function which, although this seems 
paradoxical, depends on the distance. At the transition and in the elongated phase we observe a 
power law behaviour, while in the crumpled phase we cannot find a simple function to describe 
it. 

1. Introduction 

In the dynamical triangulation model of  four-dimensional Euclidean quantum gravity 

the path integral over metrics on a certain manifold is defined by a weighted sum over 
all ways to glue four-simplices together at the faces [ 1,2]. This idea was first formulated 

in [3] ,  using hypercubes instead of  simplices. 
The partition function of  the model at some fixed volume N is 

exp(K2N2). (1)  Z ( N ,  K2) = 
T(N4=N) 

The sum is over all ways to glue N four-simplices together, such that the resulting 
complex has some fixed topology which is usually (as well as in this article) taken to 
be S 4. The Ni are the number of  i-simplices in this complex, x2 is a coupling constant, 
which is proportional to the inverse of  the bare Newton constant: K2 oc Go 1. 
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It turns out that the model has two phases. For low K2 the system is in a crumpled 
phase, where the average number of simplices around a vertex is large and the average 
distance between two simplices is small. In this phase the volume within a distance r 
appears to increase exponentially with r, a behaviour like that of a space with constant 
negative curvature. At high K2 the system is in an elongated phase and resembles a 
branched polymer. As is the case with a branched polymer, the (large scale) internal 
fractal dimension is 2. The transition between the two phases occurs at a critical value 
K~ which depends somewhat on N. This transition appears to be a continuous one, 
making a continuum limit possible [4-6].  At the transition, the space behaves in several 
respects like the four-dimensional sphere [ 7]. 

2. Curvature and volume 

In the Regge discretization of general relativity, all the simplices are pieces of flat 
space. The curvature is concentrated on the subsimplices of codimension two, in our case 
the triangles. On these triangles it is proportional to a two-dimensional delta function. 
From the definition of curvature as the rotation of a parallel transported vector, one can 
find the integrated curvature over a small region V~ (A)  around such a triangle 

f Rx/~dx = (2) 2AA6A, 

V,(a) 

where AA is the area of the triangle and 6A is the deficit angle around the triangle (see 
e.g. Ref. [8] ). The deficit angle around a triangle is the angle which is missing from 
27r 

= 2 x -  E Od, (3) 6z~ 
de{S(a)} 

where {S(A)}  are the simplices around the triangle and Oa is the angle between those 
two faces of the simplex that border the triangle. The angle ~A Can be negative. 

In dynamical triangulation, all the simplices have the same size and shape and the 
deficit angle is a simple function of the number n a  of simplices around the triangle. 

Then expression (2) reduces to 

i = 2½(27r - OnA), (4) R v/-~ dx 
V,(A) 

where 0 is the angle between two faces of a simplex, which for D dimensions equals 
a rccos ( l /D) ,  and I/2 = AA is the now constant area of a two-simplex. 

For each triangle we can define a local four-volume that belongs to the triangle by 
assigning that part of each adjoining simplex to it which is closer to the triangle than 
to any other. For equal simplices, this just results in I/4/10 per adjoining simplex with 
I/4 the volume of a four-simplex. In other words, this local volume is 
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V a =  f V ~ dx = V4 ]-~na,  (5) 

~(a)  

where Y2(A) is the region of space associated to that triangle. It is not clear what VA 
would mean in the continuum limit. We define it here mainly to compare our results 
with other work on simplicial quantum gravity. 

If we view the delta function curvature as the average of a constant curvature over 

the region Y2(A), this constant curvature would be equal to 

20½ 2 ~ -  Ona 
Rz~ - - -  (6) 

V4 n a  

Because neither a constant term nor a constant factor is important for the behaviour of 
correlation functions, we will in the rest of this paper for convenience use the definitions 

RA - nA 1 , (7) 

VA -- nA. (8) 

3. Two-point functions 

One of the interesting aspects of the dynamical triangulation model one can investigate 
is the behaviour of two-point functions of local observables. Because we are looking at 

observables defined on the triangles we consider correlations between the triangles, at a 

fixed distance d which is also defined in terms of triangles. Such a correlation function 

of an observable O(x) will be denoted by (OO)(d).  
We define the geodesic distance between two triangles as the smallest number of steps 

between neighbouring triangles needed to get from one to the other. For this purpose, we 
define two triangles to be neighbours if they are subsimplices of the same four-simplex 

and share an edge. Other definitions of  neighbour are conceivable. One such definition 
would be to define two triangles to be neighbours if they share an edge, irrespective of 

whether they are in the same simplex. The one we use has the advantage that it is quite 
narrow and therefore results in larger distances. 

The idea behind our correlation functions is as follows. For each configuration gen- 

erated according to the ensemble (1),  we take a random pair (x,y) of triangles at 

distance d, where x and y denote the triangles. For this pair we calculate the observable 
O(x)O(y). Then we go to the next configuration and repeat the process. Finally we 
take the average over all such pairs. If  no such pair exists for a particular configuration, 
the configuration is discarded. 

Obviously, this method would be very inefficient in practice. We improve the statistics 
by using the average value of O(x)O(y) over all pairs (x,y) at distance d in each 
configuration. Therefore, we calculate for each configuration 

~ x  y O( x)O(y)Sd(x y) d (9) 

~ X  v ~d(x,v) d 
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Taking the average over configurations 

~-~7- A exp( K2N2 ( T ) )  
(A)= ~-'~-exp(K2N2(T))' (10) 

results in the correlation function 

(O0)( d) = ( ~x,y O( x)O(y)t~d(x'y)'d ) 
Ex,y ~d(x,y),d " ( 11 ) 

Other definitions are conceivable. One can take random pairs of triangles from the 
collection of all configurations. Configurations with relatively many pairs of triangles 
at distance d will then be counted more often. In formula, it results in the correlation 

function 

(O0)'(d) (Y~xyO(x)O(y)Sd(xy)d) 
= ' ' ' ( 1 2 )  

(Ex,y ~d(x,y),d) 

A few experiments did not show a qualitative difference in the behaviour of (11) and 
(12) at the distances considered below. However, for large distances where the finite 
size of the configurations comes into play, the difference becomes significant. 

A third possibility, which is natural in Regge calculus, treats nx as a local volume 
element at x in a discrete approximation to a continuum integral over Euclidean space- 

time: 

= ( 1 3 )  

(~-~xynxnyt~d(xy) d) 
In this paper we explore the form ( 11 ). We expect that the correlations constructed from 
either (11 ), (12) or (13) will behave identically for not too large distances. In a large 
system, compared to the distance under consideration, the sum over the triangles will 
introduce a self-averaging which probably makes the difference in averaging between 

( 11 ) and (12) irrelevant. 
In Fig. 1 we have plotted the correlation function of the curvature, with the square 

of its expectation value subtracted. Most of the data in this paper are for a volume 
N = 16 000 simplices. The values of K2 correspond to a system in the crumpled phase 
(K2 = 0.8), near (but slightly below) the transition (K2 = 1.22) and in the elongated 

phase (x2 = 1.5). 
Configurations were recorded every 10000 sweeps, where a sweep is defined as a 

number of accepted moves equal to the number of simplices N. For K2 = 0.8, 1.22 and 
1.5 we used 16, 51 and 21 configurations, respectively. 

One thing is immediately striking: the correlation functions do not go to zero at long 
distances. To keep the short distance behaviour visible, the full range in the elongated 
phase has not been plotted, but we already see that also in this phase it crosses the zero 
axis and indeed this curve does eventually go to large ( ~  0.02) positive values. 
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Fig. 1. The correlation function (RR)(d)  - (R) 2 for various values of x2. 

1 0  ,~ , 

%* 0.80 '-,--, 
1.22 

'~ r~ ", 1.50 

5 '~ "~' 

~ • 
m ~.. 

c ~ k 

-5 "; 
k 

",x 

- I 0 ' ' 'W-T"' + ' ~  ' ' ' ' 

5 10 15 20 25 30 35 40 
d 

Fig. 2. The correlation function (nn)(d)  - (n) 2 for various values of K2. 

The local volume Vzx is proportional to the number of simplices ni around a triangle 
i. We see that in this model, this observable Vzx is essentially the same as the scalar 

curvature. At first sight, one would therefore expect them to have the same behaviour. 
I f  one is positively correlated, the other one would also be positively correlated. Fig. 2 
shows the correlation of n. We see that quite the opposite is true. With few exceptions, 
n is positively correlated where R = n -1 is negatively correlated and vice versa. 

This behaviour is similar to that reported for the Regge calculus formulation of sim- 

plicial quantum gravity in Ref. [9]. There it is also found that the curvature correlations 
are positive and the volume correlations negative at large distances. 

This difference in behaviour can be explained intuitively as follows. Because triangles 
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Fig .  3. T h e  c u r v a t u r e  as  a func t ion  o f  the  d i s t a n c e  (R)(d) fo r  v a r i o u s  v a l u e s  o f  K2. 

with large n have more neighbours, any random triangle will have a large chance to be 
close to a point with large n and a small change to be close to a point with small n. So 

whatever the value of n at the origin, the points nearby have large n and the points far 

away have small n. The average (nn) will then be large at small distances and small at 
large distances. Because large n means small R, the situation is reversed if we substitute 
R for n in this discussion, qualitatively explaining Figs. 1 and 2. 

At first sight one might conclude from this explanation that a point with large n 

having many neighbours is just an artefact of the model. This is not true, however. 

Large n corresponds to large negative curvature and also in the continuum a point with 

large negative curvature has a larger neighbourhood. To be more precise, the volume of 
d-dimensional space within a radius r around a point with scalar curvature R equals 

( R rz+o(r4)). (14) V(R)=Car d 1 6 ( d + 2 )  

4. Connected part 

The above reasoning leads us to the somewhat unusual concept of a correlation 
function that does not depend on some observable at the origin. We define such a 
correlation as 

( ~'~x,v Rxtd(x,y),d <R>(a) = \ ), 
where x and y denote a triangle. In the more usual case of a quantum field theory on 
flat space this could never depend on the distance, but here it does. The reason is that 
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Fig. 4. Comparison between the correlation function (RR)(d) (upper curves of each pair) and the squared 
one-point function (R)(d) 2 (lower curves) at various values of ,x2. 

we correlate functions of  the geometry with the distance, which is itself a function of  

the geometry. 

Fig. 3 shows this correlation function. No average has been subtracted. The behaviour 

of  this one-point function turns out to be very similar to that of  the curvature correlation 

in Fig. 1. This correlation function again shows that any particular point has a large 

chance to be in the neighbourhood of  a point with low curvature, which can be simply 

explained with the fact that points with low curvature have more neighbourhood. 

The same plot for n (not shown) shows the opposite behaviour. At small distances it 

is larger than average, while at large distances it is smaller than average. This is rather 

obvious, because where n is large, its inverse is small and vice versa. 

We can now investigate how much of  the curvature correlation shown of  Fig. 1 is due 

to this effect. Fig. 4 compares the curvature correlation ( R R ) ( d )  with the square of  this 

one-point function. We see that, except at small distances, the two are indistinguishable 
on this scale. In other words, we have not been measuring any curvature correlations. 

All we have measured are correlations between the curvature and the geodesic distance. 
Similarly, (nn)(d) and (n)(d) 2 are nearly equal. 

It is now easy to explain the difference in behaviour between the curvature and 

the volume correlations. Because they are almost equal to the square of  ( R ) ( d )  and 

(n) (d )  respectively, they behave just like them. And as we just mentioned, it is easy to 
understand that these have opposite behaviours. 

The way to go now is to subtract the two things and see what real curvature corre- 

lations are left. This is similar to subtracting a disconnected diagram and keeping the 

connected part. We get the corrected correlation functions 

CR(d)  = ( R R ) ( d )  - ( R ) ( d )  2 , (16) 
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Fig. 5. Corrected correlation function CR(d) at various values of K2. 

0.1 

0.05 

0 

-0.05 

"% -0.1 
o 

-0.15 

-0.2 

-0.25 

-0.3 
0 

~ ' \  i : i  / 

i ,/ 0.80 ~ - ~  ~, 1.22 
" 1.50 

I I I I I i I 

5 10 15 20 25 30 35 40 
d 

Fig. 6. Corrected correlation function Cv(d) at various values of K2. 

c v (  a )  = (nn)(  a )  - (n>( d)  2 . (17) 

The results for the curvature are plotted in Fig. 5 and those for the volume in Fig. 6. 
The error bars were found by a jackknife method, each time leaving out one of the 
configurations in the calculation of CR(d) and Cv(d). Now both correlations behave 
almost exactly the same. Note the large difference in scale between these figures and 

Figs. 1 and 2. 
In the crumpled phase we were not able to fit CR(d) to a simple function. This is 

probably due to the fact that we cannot reach very large distances in this phase. Near 
the transition however it is possible to fit the correlation function to a power law decay, 
at not too small distances. This is shown in Fig. 7. In the region 9 <~ d ~< 18 it fits 
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Fig. 7. Power law fit to curvature correlation CR(d) near the phase transition at N4 = 32000  and K2 = 1.255. 

nicely to ad b with the result 

a =  - 0 . 5 ( 2 ) ,  (18) 

b= - 4 . 0 ( 2 ) ,  (19) 

X 2 =5 at 8 d.o.f. (20) 

This data was made at a volume of 32 000 simplices, with x2 = 1.255. We used 65 
configurations, which were recorded every 5000 sweeps. A similar fit using Cv gives a 
compatible power, 

a = - 5 . 7 ( 1 . 6 )  × 102, (21) 

b= - 4 . 3 0 ( 1 2 ) ,  (22) 

X2= 2.3 at 8 d.o.f. (23) 

This result should be taken with caution, however. One would really like to have a 
good fit over a larger range. To get some idea of the typical ranges involved, we consider 
the number of triangles at a given distance d, 

(N, ( d) ) = ( ~-]~x,y Bd(x,y),d ) 
N2 (24) 

where N2 is the number of triangles of the configuration. The corresponding quantity 
with "triangles" replaced by "four-simplices" was studied more closely in [7]. The 
value d,, where N~(d) has its maximum, is an indication of the distance at which finite 
size effects might become important. At K2 = 1.255, this dm is only 11, indicating that 
finite size effects may play a role in the measured power. 
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Fig. 8. Power law fit to curvature correlation CR(d) in the elongated phase at x2 = 1.5. 

The situation is even better far in the elongated phase. Here a power law fits well, as 
can be seen in Fig. 8. This fit was done to the points 3 ~< d ~< 15 and the parameters of  
this fit are for CR 

a =  - 0 . 0 0 3 8 ( 1 ) ,  (25) 

b =  - 2 . 5 6 ( 3 ) ,  (26) 

X2= 17 at 11 d.o.f. (27) 

and for Cv 

a =  - 2 . 2 ( 1 ) ,  (28) 

b =  - 2 . 5 7 ( 2 ) ,  (29) 

X2= 14 at 11 d.o.f. (30) 

The value of  d with maximum number of triangles was 32, so in this case we are 
in a region of small distances compared to the system size. This data was made from 
23 configurations of 32000 simplices. We have also fitted the connected correlation 
functions at other points far in the elongated phase and at 16000 simplices. The power 
that emerged was within the errors equal to the one given above. 

5. Discussion 

We have investigated the behaviour of the curvature and volume correlation functions. 
It turned out that the naive correlation functions could be almost entirely described by a 
"disconnected part", which we therefore subtracted. The difference turns out to behave 
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according to a power law in the elongated phase and near the transition. This indicates 

the presence of massless excitations. 

An obvious question is what the continuum observables are corresponding to the cor- 
relation functions we have measured. Generally, in a scaling region, a lattice operator is 
equivalent to a combination of various continuum operators, weighted with powers of 
the lattice distance a according to their dimensions. In a previous paper [7] we found 

evidence for scaling in a surprisingly wide region around the transition value of x2. 

Assuming that the theory can be described by a continuum metric tensor g~,~ with cor- 
responding curvature R, the continuum observable with lowest dimension corresponding 

to our lattice correlation function would be given by 

CR, Cv --~ ( f  dx gv/g-C-~ f dy gv/~--~(d(x'Y) - d)R(x)R(y)) 
( f  d x ~ f  dy gvfg-~ ~(d(x,y) - d)) 

( ( f  dxgv/~--~ f dygv/-g-C-~ 6(d(x, y) - d)R(x)) ) 2 
- ' 

where d(x, y) is the geodesic distance between the points x and y for a given metric 

gu,. The uniqueness of the lowest dimension correlation function in the continuum is 

in accordance with the fact that we found identical behaviour for CR and Cv, up to an 
overall factor. Of course, we do not know the effective action specifying the average in 

(31 ). It could be a combination of f dxv~R and higher order R 2 terms. 
The fact that the connected correlation function is negative suggests that it registers 

fluctuations in the conformal mode of gu,. 

In a previous paper [7] we explored the possibility of a semiclassical region near 
the transition, in which the system behaves like a four-sphere for not too small or large 

distances. To this end, we defined a scale dependent effective curvature. For x2 near 
the transition the following picture emerged. At small distances, this effective curvature 
is large, indicating a Planckian regime. At intermediate distances there seems to be 

a semiclassical regime, where the space behaves like a four-sphere. The fluctuations 

around this approximate S 4 might then correspond to gravitons. We consider it therefore 
encouraging that we find the power law behaviour. 

For the volumes in current use, the effective curvature shows that the semiclassical 

regime sets in at a distance roughly 0.6 of rm (cf. Fig. 13 in [7] ). Here, rm is the 
geodesic distance through the simplices where the number of simplices Nl(r) has its 
maximum. We conjectured this fraction to go down at larger volumes. Similarly, a little 

beyond 0.6 of d m =  11 turns out to be the distance where the curvature correlations start 
to behave like d -4  in Fig. 7. We like to think of this as a confirmation of the point of 
view sketched above. 

Two-point functions of curvature and volume have been studied in the Regge calculus 
formulation of simplicial quantum gravity in Refs. [9,10]. In these studies there are only 
results in what is called the well-defined phase of the Regge calculus approach, which 
corresponds to our crumpled phase. This makes it hard to do more than the qualitative 
comparison which was done in Section 3. 
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The curvature correlations have also been investigated in the continuum. In Ref. [ 11 ] 
they were found to be of zero range in the tree approximation to Einstein gravity. To one 
loop order we may expect on dimensional grounds a behaviour G2d -s  in flat space, and 
G2~2d -4 for S 4, where G is Newton's constant and R is the S 4 background curvature. 

In [ 12] a theory is developed for the conformal factor in four-dimensional quantum 
gravity and from this the curvature correlation is calculated. The conformally invariant 
phase discussed in [ 12] seems to correspond to the elongated phase in the dynamical 
triangulation model. Intuitively, this can be understood by visualizing large fluctuations 
in the conformal factor as generating many baby universes. Many baby universes is also 
a feature of the branched polymer like elongated phase of simplicial quantum gravity 
[ 13]. Furthermore, the conformally invariant phase would occur at very large distance 
scales. In [7] we argued that the elongated phase also describes scales which are large 
compared to a typical physical curvature scale. In this conformally invariant phase a 
power law is predicted for the curvature correlations (see also [ 14] ). Unfortunately, a 

direct comparison with [ 12,14] is not possible because in the continuum the correlation 
function is defined as a function of the distance in a fixed fiducial metric, a quantity that 
is not yet defined in our model. Our result ~ 2.6 for the power in the elongated phase is 
quite different from the ~ 0.7, which corresponds to the analogue central charge Q2 ~ 8 
suggested in [ 14]. 
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