175 research outputs found

    The structure of Green functions in quantum field theory with a general state

    Full text link
    In quantum field theory, the Green function is usually calculated as the expectation value of the time-ordered product of fields over the vacuum. In some cases, especially in degenerate systems, expectation values over general states are required. The corresponding Green functions are essentially more complex than in the vacuum, because they cannot be written in terms of standard Feynman diagrams. Here, a method is proposed to determine the structure of these Green functions and to derive nonperturbative equations for them. The main idea is to transform the cumulants describing correlations into interaction terms.Comment: 13 pages, 6 figure

    Auditory distraction during reading: A Bayesian meta-analysis of a continuing controversy

    Get PDF
    Everyday reading occurs in different settings, such as on the train to work, in a busy cafeteria, or at home, while listening to music. In these situations, readers are exposed to external auditory stimulation from nearby noise, speech, or music that may distract them from their task and reduce their comprehension. Although many studies have investigated auditory distraction effects during reading, the results have proved to be inconsistent and sometimes even contradictory. Additionally, the broader theoretical implications of the findings have not always been explicitly considered. In the present study, we report a Bayesian meta-analysis of 65 studies on auditory distraction effects during reading and use meta-regression models to test predictions derived from existing theories. The results showed that background noise, speech, and music all have a small, but reliably detrimental effect on reading performance. The degree of disruption in reading comprehension did not generally differ between adults and children. Intelligible speech and lyrical music resulted in the biggest distraction. While this last result is consistent with theories of semantic distraction, there was also reliable distraction by noise. It is argued that new theoretical models are needed that can account for distraction by both background speech and noise

    (Borel) convergence of the variationally improved mass expansion and the O(N) Gross-Neveu model mass gap

    Full text link
    We reconsider in some detail a construction allowing (Borel) convergence of an alternative perturbative expansion, for specific physical quantities of asymptotically free models. The usual perturbative expansions (with an explicit mass dependence) are transmuted into expansions in 1/F, where F∌1/g(m)F \sim 1/g(m) for m≫Λm \gg \Lambda while F∌(m/Λ)αF \sim (m/\Lambda)^\alpha for m \lsim \Lambda, Λ\Lambda being the basic scale and α\alpha given by renormalization group coefficients. (Borel) convergence holds in a range of FF which corresponds to reach unambiguously the strong coupling infrared regime near m→0m\to 0, which can define certain "non-perturbative" quantities, such as the mass gap, from a resummation of this alternative expansion. Convergence properties can be further improved, when combined with ÎŽ\delta expansion (variationally improved perturbation) methods. We illustrate these results by re-evaluating, from purely perturbative informations, the O(N) Gross-Neveu model mass gap, known for arbitrary NN from exact S matrix results. Comparing different levels of approximations that can be defined within our framework, we find reasonable agreement with the exact result.Comment: 33 pp., RevTeX4, 6 eps figures. Minor typos, notation and wording corrections, 2 references added. To appear in Phys. Rev.

    Open and Hidden Charm Production in 920 GeV Proton-Nucleus Collisions

    Full text link
    The HERA-B collaboration has studied the production of charmonium and open charm states in collisions of 920 GeV protons with wire targets of different materials. The acceptance of the HERA-B spectrometer covers negative values of xF up to xF=-0.3 and a broad range in transverse momentum from 0.0 to 4.8 GeV/c. The studies presented in this paper include J/psi differential distributions and the suppression of J/psi production in nuclear media. Furthermore, production cross sections and cross section ratios for open charm mesons are discussed.Comment: 5 pages, 9 figures, to be published in the proceedings of the 6th International Conference on Hyperons, Charm & Beauty Hadrons (BEACH04), Chicago, IL, June 27 - July 3, 200

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Charged pions from Ni on Ni collisions between 1 and 2 AGeV

    Get PDF
    Charged pions from Ni + Ni reactions at 1.05, 1.45 and 1.93 AGeV are measured with the FOPI detector. The mean π±\pi^{\pm} multiplicities per mean number of participants increase with beam energy, in accordance with earlier studies of the Ar + KCl and La + La systems. The pion kinetic energy spectra have concave shape and are fitted by the superposition of two Boltzmann distributions with different temperatures. These apparent temperatures depend only weakly on bombarding energy. The pion angular distributions show a forward/backward enhancement at all energies, but not the Θ=900\Theta = 90^0 enhancement which was observed in case of the Au + Au system. These features also determine the rapidity distributions which are therefore in disagreement with the hypothesis of one thermal source. The importance of the Coulomb interaction and of the pion rescattering by spectator matter in producing these phenomena is discussed

    LHCb inner tracker: Technical Design Report

    Get PDF
    • 

    corecore