13,439 research outputs found

    Modified 2D Proca Theory: Revisited Under BRST and (Anti-)Chiral Superfield Formalisms

    Full text link
    Within the framework of Becchi-Rouet-Stora-Tyutin (BRST) approach, we discuss mainly the fermionic (i.e. off-shell nilpotent) (anti-)BRST, (anti-)co-BRST and some discrete dual-symmetries of the appropriate Lagrangian densities for a two (1+1)-dimensional (2D) modified Proca (i.e. a massive Abelian 1-form) theory without any interaction with matter fields. One of the novel observations of our present investigation is the existence of some kinds of restrictions in the case of our present St\"{u}ckelberg-modified version of the 2D Proca theory which is not like the standard Curci-Ferrari (CF)-condition of a non-Abelian 1-form gauge theory. Some kinds of similarities and a few differences between them have been pointed out in our present investigation. To establish the sanctity of the above off-shell nilpotent (anti-)BRST and (anti-)co-BRST symmetries, we derive them by using our newly proposed (anti-)chiral superfield formalism where a few specific and appropriate sets of invariant quantities play a decisive role. We express the (anti-)BRST and (anti-)co-BRST conserved charges in terms of the superfields that are obtained after the applications of (anti-)BRST and (anti-)co-BRST invariant restrictions and prove their off-shell nilpotency and absolute anticommutativity properties, too. Finally, we make some comments on (i) the novelty of our restrictions/obstructions, and (ii) the physics behind the negative kinetic term associated with the pseudo-scalar field of our present theory.Comment: LaTeX file, 58 pages, Journal reference give

    Photophysics of 6-Methoxyquinoline in Nafion® Polymer Matrix

    Get PDF

    Design and simulation of thin-film silicon quantum well photovoltaic cell

    Get PDF
    A new thin-film silicon photovoltaic cell could be designed by inserting quantum well layers in the intrinsic region. Calculations show the improvement in spectral absorption due to the quantum well layer insertion. This article reports the design parameters and enhanced spectral absorption for a newly designed thin-film silicon quantum well photovoltaic cell. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/1057

    Coulomb blockade and quantum tunnelling in the low-conductivity phase of granular metals

    Full text link
    We study the effects of Coulomb interaction and inter-grain quantum tunnelling in an array of metallic grains using the phase-functional approach for temperatures TT well below the charging energy EcE_{c} of individual grains yet large compared to the level spacing in the grains. When the inter-grain tunnelling conductance g1g\gg1, the conductivity σ\sigma in dd dimensions decreases logarithmically with temperature (σ/σ0112πgdln(gEc/T)\sigma/\sigma_{0}\sim1-\frac{1}{2\pi gd}\ln(gE_{c}/T)), while for g0g\to0, the conductivity shows simple activated behaviour (σexp(Ec/T)\sigma \sim \exp(-E_c/T)). We show, for bare tunnelling conductance g1g \gtrsim 1, that the parameter γg(12/(gπ)ln(gEc/T))\gamma \equiv g(1-2/(g\pi)\ln(gE_{c}/T)) determines the competition between charging and tunnelling effects. At low enough temperatures in the regime 1γ1/βEc1\gtrsim \gamma \gg 1/\sqrt{\beta E_{c}}, a charge is shared among a finite number N=(Ec/T)/ln(π/2γz)N=\sqrt{(E_{c}/T)/\ln(\pi/2\gamma z)} of grains, and we find a soft activation behaviour of the conductivity, σz1exp(2(Ec/T)ln(π/2γz))\sigma\sim z^{-1}\exp(-2\sqrt{(E_{c}/T)\ln(\pi/2\gamma z)}), where zz is the effective coordination number of a grain.Comment: 11 pages REVTeX, 3 Figures. Appendix added, replaced with published versio

    Magnetic field induced Coulomb blockade in small disordered delta-doped heterostructures

    Full text link
    At low densities, electrons confined to two dimensions in a delta-doped heterostructure can arrange themselves into self-consistent droplets due to disorder and screening effects. We use this observation to show that at low temperatures, there should be resistance oscillations in low density two dimensional electron gases as a function of the gate voltage, that are greatly enhanced in a magnetic field. These oscillations are intrinsic to small samples and give way to variable range hopping resistivity at low temperatures in larger samples. We place our analysis in the context of recent experiments where similar physical effects have been discussed from the point of view of a Wigner crystal or charge density wave picture.Comment: 6 pages RevTeX, 2 figures, published versio

    Development of Readout Interconnections for the Si-W Calorimeter of SiD

    Full text link
    The SiD collaboration is developing a Si-W sampling electromagnetic calorimeter, with anticipated application for the International Linear Collider. Assembling the modules for such a detector will involve special bonding technologies for the interconnections, especially for attaching a silicon detector wafer to a flex cable readout bus. We review the interconnect technologies involved, including oxidation removal processes, pad surface preparation, solder ball selection and placement, and bond quality assurance. Our results show that solder ball bonding is a promising technique for the Si-W ECAL, and unresolved issues are being addressed.Comment: 8 pages + title, 6 figure
    corecore