13,439 research outputs found
Modified 2D Proca Theory: Revisited Under BRST and (Anti-)Chiral Superfield Formalisms
Within the framework of Becchi-Rouet-Stora-Tyutin (BRST) approach, we discuss
mainly the fermionic (i.e. off-shell nilpotent) (anti-)BRST, (anti-)co-BRST and
some discrete dual-symmetries of the appropriate Lagrangian densities for a two
(1+1)-dimensional (2D) modified Proca (i.e. a massive Abelian 1-form) theory
without any interaction with matter fields. One of the novel observations of
our present investigation is the existence of some kinds of restrictions in the
case of our present St\"{u}ckelberg-modified version of the 2D Proca theory
which is not like the standard Curci-Ferrari (CF)-condition of a non-Abelian
1-form gauge theory. Some kinds of similarities and a few differences between
them have been pointed out in our present investigation. To establish the
sanctity of the above off-shell nilpotent (anti-)BRST and (anti-)co-BRST
symmetries, we derive them by using our newly proposed (anti-)chiral superfield
formalism where a few specific and appropriate sets of invariant quantities
play a decisive role. We express the (anti-)BRST and (anti-)co-BRST conserved
charges in terms of the superfields that are obtained after the applications of
(anti-)BRST and (anti-)co-BRST invariant restrictions and prove their off-shell
nilpotency and absolute anticommutativity properties, too. Finally, we make
some comments on (i) the novelty of our restrictions/obstructions, and (ii) the
physics behind the negative kinetic term associated with the pseudo-scalar
field of our present theory.Comment: LaTeX file, 58 pages, Journal reference give
Design and simulation of thin-film silicon quantum well photovoltaic cell
A new thin-film silicon photovoltaic cell could be designed by inserting quantum well layers in the intrinsic region. Calculations show the improvement in spectral absorption due to the quantum well layer insertion. This article reports the design parameters and enhanced spectral absorption for a newly designed thin-film silicon quantum well photovoltaic cell.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/1057
Coulomb blockade and quantum tunnelling in the low-conductivity phase of granular metals
We study the effects of Coulomb interaction and inter-grain quantum
tunnelling in an array of metallic grains using the phase-functional approach
for temperatures well below the charging energy of individual
grains yet large compared to the level spacing in the grains. When the
inter-grain tunnelling conductance , the conductivity in
dimensions decreases logarithmically with temperature
(), while for ,
the conductivity shows simple activated behaviour ().
We show, for bare tunnelling conductance , that the parameter
determines the competition between
charging and tunnelling effects. At low enough temperatures in the regime
, a charge is shared among a finite
number of grains, and we find a soft
activation behaviour of the conductivity, , where is the effective
coordination number of a grain.Comment: 11 pages REVTeX, 3 Figures. Appendix added, replaced with published
versio
Magnetic field induced Coulomb blockade in small disordered delta-doped heterostructures
At low densities, electrons confined to two dimensions in a delta-doped
heterostructure can arrange themselves into self-consistent droplets due to
disorder and screening effects. We use this observation to show that at low
temperatures, there should be resistance oscillations in low density two
dimensional electron gases as a function of the gate voltage, that are greatly
enhanced in a magnetic field. These oscillations are intrinsic to small samples
and give way to variable range hopping resistivity at low temperatures in
larger samples. We place our analysis in the context of recent experiments
where similar physical effects have been discussed from the point of view of a
Wigner crystal or charge density wave picture.Comment: 6 pages RevTeX, 2 figures, published versio
Development of Readout Interconnections for the Si-W Calorimeter of SiD
The SiD collaboration is developing a Si-W sampling electromagnetic
calorimeter, with anticipated application for the International Linear
Collider. Assembling the modules for such a detector will involve special
bonding technologies for the interconnections, especially for attaching a
silicon detector wafer to a flex cable readout bus. We review the interconnect
technologies involved, including oxidation removal processes, pad surface
preparation, solder ball selection and placement, and bond quality assurance.
Our results show that solder ball bonding is a promising technique for the Si-W
ECAL, and unresolved issues are being addressed.Comment: 8 pages + title, 6 figure
- …
