757 research outputs found
Evaluation of the Mineral Element Profile of Wastes of Some Wine Grape (Vitis Vinifera L.) Varieties
In this study, the level of macro and micro elements of six wine grape cultivars were determined in seeds, bagasse (skin and pulp) and pomace (seed, skin and pulp) by inductively coupled plasma mass spectrometry and atomic absorption spectroscopy after microwave digestion (ICP-AES). The levels of macro and micro elements exhibited a genotype dependent alteration and affected by the part of the berry sampled. Potassium was the predominant macro element in bagasse and pomace, varying from 6.78 g/kg dry weight in pomace (Carignane) to 21.05 g/kg dry weight in bagasse (Cabernet Sauvignon). However, the level of calcium was higher than potassium in seeds and varied between 4.95 g/kg (Kalecik karası) and 6.73 g/kg (Carignane). Seeds were also richer than the bagasse and pomace related with phosphorus, magnesium, and sulfur. Among the micro elements, Fe had the highest amount in all parts of the berries. Its content ranged from 13.9 mg/kg dry weights in bagasse of Semillon to 24.8 mg/kg dry weight in seeds of Syrah. Iron, manganese, zinc and molybdenum in seeds; copper and boron in bagasse were higher amount than the other groups analyzed. The results of this study show that all parts of the grape berries are potentially rich sources of mineral elements. So, they could be used as a food supplement to improve the nutritive value of the human diet and for some engineering processes in food industry
MONTE CARLO SIMULATIONS OF MUON PRODUCTION
Muon production requirements for a muon collider are presented. Production of
muons from pion decay is studied. Lithium lenses and solenoids are considered
for focussing pions from a target, and for matching the pions into a decay
channel. Pion decay channels of alternating quadrupoles and long solenoids are
compared. Monte Carlo simulations are presented for production of by protons over a wide energy range, and criteria for
choosing the best proton energy are discussed.Comment: Latex uses mu95.sty, 19 pages, 5 postscript figures. A postscript
file can be seen at URL http://www.cap.bnl.gov/~cap/mumu/important.html
Search for Publication
Exploring the precision of femtosecond laser-assisted descemetorhexis in Descemet membrane endothelial keratoplasty
Objective Descemet membrane endothelial keratoplasty (DMEK) remains a challenging technique. We compare the precision of femtosecond laser-assisted DMEK to manual DMEK. Methods and Analysis A manual descemetorhexis (DR) of 8 mm diameter was compared with a femtosecond laser-assisted DR of the same diameter (femto-DR) in 22 pseudophakic patients requiring DMEK. We used OCT images with a centred xy-diagram to measure the postoperative precision of the DR and the amount of endothelial denuded area. Endothelial cell loss (ECL) and best corrected visual acuity were measured 3 months after surgery. Results In the manual group, the median error of the DR was 7% (range 3%-16%) in the x-diameter and 8% (range 2%-17%) in the y-diameter. In the femto group, the median error in the respective x and y-diameters was 1% (range 0.4%-3%) and 1% (range 0.006%-2.5%), smaller than in the manual group (p=0.001). Endothelial denuded areas were larger in the manual group (11.6 mm(2), range 7.6-18 mm(2)) than in the femto group (2.5 mm(2), range 1.25.9 mm(2)) (p<0.001). The ECL was 21% (range 5%-78%) in the manual DR and 17% (range 6%-38%) in the femto-DR group (p=0.351). The median visual acuity increased from 0.4 logMAR (range 0.6-0.4 logMAR) in both groups to 0.1 logMAR (range 0.4-0 logMAR) in the manual group and to 0.1 logMAR (range 0.3-0 logMAR) in the femto group (p=0.461). Three rebubblings were required in the manual group, whereas the femto group required only one. Conclusion The higher precision of the femto-DR bears the potential to improve DMEK surgery
Muon Colliders
Muon Colliders have unique technical and physics advantages and disadvantages
when compared with both hadron and electron machines. They should thus be
regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high
luminosity \mumu colliders, and of a 0.5 TeV lower luminosity demonstration
machine. We discuss the various systems in such muon colliders, starting from
the proton accelerator needed to generate the muons and proceeding through muon
cooling, acceleration and storage in a collider ring. Problems of detector
background are also discussed.Comment: 28 pages, with 12 postscript figures. To be published Proceedings of
the 9th Advanced ICFA Beam Dynamics Workshop, AIP Pres
Antiproton Production in Collisions at AGS Energies
Inclusive and semi-inclusive measurements are presented for antiproton
() production in proton-nucleus collisions at the AGS. The inclusive
yields per event increase strongly with increasing beam energy and decrease
slightly with increasing target mass. The yield in 17.5 GeV/c p+Au
collisions decreases with grey track multiplicity, , for ,
consistent with annihilation within the target nucleus. The relationship
between and the number of scatterings of the proton in the nucleus is
used to estimate the annihilation cross section in the nuclear
medium. The resulting cross section is at least a factor of five smaller than
the free annihilation cross section when assuming a small or
negligible formation time. Only with a long formation time can the data be
described with the free annihilation cross section.Comment: 8 pages, 6 figure
The experimental program for high pressure gas filled radio frequency cavities for muon cooling channels
An intense beam of muons is needed to provide a luminosity on the order of 10(34) cm(-2)s(-1) for a multi-TeV collider. Because muons produced by colliding a multi-MW proton beam with a target made of carbon or mercury have a large phase space, significant six dimensional cooling is required. Through ionization cooling - the only cooling method that works within the lifetime of the muon - and emittance exchange, the desired emittances for a Higgs Factory or higher energy collider are attainable. A cooling channel utilizing gas filled radio frequency cavities has been designed to deliver the requisite cool muon beam. Technology development of these RF cavities has progressed from breakdown studies, through beam tests, to dielectric loaded and reentrant cavity designs. The results of these experiments are summarized
Observation of electron-antineutrino disappearance at Daya Bay
The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for
the neutrino mixing angle with a significance of 5.2 standard
deviations. Antineutrinos from six 2.9 GW reactors were detected in
six antineutrino detectors deployed in two near (flux-weighted baseline 470 m
and 576 m) and one far (1648 m) underground experimental halls. With a 43,000
ton-GW_{\rm th}-day livetime exposure in 55 days, 10416 (80376) electron
antineutrino candidates were detected at the far hall (near halls). The ratio
of the observed to expected number of antineutrinos at the far hall is
. A rate-only analysis
finds in a
three-neutrino framework.Comment: 5 figures. Version to appear in Phys. Rev. Let
- …
