2,771 research outputs found
Alcohol, tobacco and breast cancer: should alcohol be condemned and tobacco acquitted?
British Journal of Cancer (2002) 87, 1195â1196. doi:10.1038/sj.bjc.6600633 www.bjcancer.co
Quantum Zeno effect in a probed downconversion process
The distorsion of a spontaneous downconvertion process caused by an auxiliary
mode coupled to the idler wave is analyzed. In general, a strong coupling with
the auxiliary mode tends to hinder the downconversion in the nonlinear medium.
On the other hand, provided that the evolution is disturbed by the presence of
a phase mismatch, the coupling may increase the speed of downconversion. These
effects are interpreted as being manifestations of quantum Zeno or anti-Zeno
effects, respectively, and they are understood by using the dressed modes
picture of the device. The possibility of using the coupling as a nontrivial
phase--matching technique is pointed out.Comment: 11 pages, 4 figure
Zeno dynamics yields ordinary constraints
The dynamics of a quantum system undergoing frequent measurements (quantum
Zeno effect) is investigated. Using asymptotic analysis, the system is found to
evolve unitarily in a proper subspace of the total Hilbert space. For spatial
projections, the generator of the "Zeno dynamics" is the Hamiltonian with
Dirichlet boundary conditions.Comment: 6 page
Male tobacco smoke load and non-lung cancer mortality associations in Massachusetts
<p>Abstract</p> <p>Background</p> <p>Different methods exist to estimate smoking attributable cancer mortality rates (Peto and Ezzati methods, as examples). However, the smoking attributable estimates using these methods cannot be generalized to all population sub-groups. A simpler method has recently been developed that can be adapted and applied to different population sub-groups. This study assessed cumulative tobacco smoke damage (smoke load)/non-lung cancer mortality associations across time from 1979 to 2003 among all Massachusetts males and ages 30â74 years, using this novel methodology.</p> <p>Methods</p> <p>Annual lung cancer death rates were used as smoke load bio-indices, and age-adjusted lung/all other (non-lung) cancer death rates were analyzed with linear regression approach. Non-lung cancer death rates include all cancer deaths excluding lung. Smoking-attributable-fractions (SAFs) for the latest period (year 2003) were estimated as: 1-(estimated unexposed cancer death rate/observed rate).</p> <p>Results</p> <p>Male lung and non-lung cancer death rates have declined steadily since 1992. Lung and non-lung cancer death rates were tightly and steeply associated across years. The slopes of the associations analyzed were 1.69 (95% confidence interval (CI) 1.35â2.04, r = 0.90), and 1.36 (CI 1.14â1.58, r = 0.94) without detected autocorrelation (Durbin-Watson statistic = 1.8). The lung/non-lung cancer death rate associations suggest that all-sites cancer death rate SAFs in year 2003 were 73% (Sensitivity Range [SR] 61â82%) for all ages and 74% (SR 61â82%) for ages 30â74 years.</p> <p>Conclusion</p> <p>The strong lung/non-lung cancer death rate associations suggest that tobacco smoke load may be responsible for most prematurely fatal cancers at both lung and non-lung sites. The present method estimates are greater than the earlier estimates. Therefore, tobacco control may reduce cancer death rates more than previously noted.</p
Spallation Neutron Production by 0.8, 1.2 and 1.6 GeV Protons on various Targets
Spallation neutron production in proton induced reactions on Al, Fe, Zr, W,
Pb and Th targets at 1.2 GeV and on Fe and Pb at 0.8, and 1.6 GeV measured at
the SATURNE accelerator in Saclay is reported. The experimental
double-differential cross-sections are compared with calculations performed
with different intra-nuclear cascade models implemented in high energy
transport codes. The broad angular coverage also allowed the determination of
average neutron multiplicities above 2 MeV. Deficiencies in some of the models
commonly used for applications are pointed out.Comment: 20 pages, 32 figures, revised version, accepted fpr publication in
Phys. Rev.
Excitons in one-dimensional Mott insulators
We employ dynamical density-matrix renormalization group (DDMRG) and
field-theory methods to determine the frequency-dependent optical conductivity
in one-dimensional extended, half-filled Hubbard models. The field-theory
approach is applicable to the regime of `small' Mott gaps which is the most
difficult to access by DDMRG. For very large Mott gaps the DDMRG recovers
analytical results obtained previously by means of strong-coupling techniques.
We focus on exciton formation at energies below the onset of the absorption
continuum. As a consequence of spin-charge separation, these Mott-Hubbard
excitons are bound states of spinless, charged excitations (`holon-antiholon'
pairs). We also determine exciton binding energies and sizes. In contrast to
simple band insulators, we observe that excitons exist in the Mott-insulating
phase only for a sufficiently strong intersite Coulomb repulsion. Furthermore,
our results show that the exciton binding energy and size are not related in a
simple way to the strength of the Coulomb interaction.Comment: 15 pages, 6 eps figures, corrected typos in labels of figures 4,5,
and
Reflection and Transmission in a Neutron-Spin Test of the Quantum Zeno Effect
The dynamics of a quantum system undergoing frequent "measurements", leading
to the so-called quantum Zeno effect, is examined on the basis of a
neutron-spin experiment recently proposed for its demonstration. When the
spatial degrees of freedom are duely taken into account, neutron-reflection
effects become very important and may lead to an evolution which is totally
different from the ideal case.Comment: 26 pages, 6 figure
Can lepton flavor violating interactions explain the LSND results?
If the atmospheric and the solar neutrino problem are both explained by
neutrino oscillations, and if there are only three light neutrinos, then all
mass-squared differences between the neutrinos are known. In such a case,
existing terrestrial neutrino oscillation experiments cannot be significantly
affected by neutrino oscillations, but, in principle there could be an anomaly
in the neutrino flux due to new neutrino interactions. We discuss how a
non-standard muon decay would modify the
neutrino production processes of these experiments. Since violation
is small for New Physics above the weak scale one can use related
flavor-violating charged lepton processes to constrain these decays in a model
independent way. We show that the upper bounds on ,
muonium-antimuonium conversion and rule out any observable
effect for the present experiments due to
for , respectively. Applying similar arguments to
flavor-changing semi-leptonic reactions we exclude the possibility that the
"oscillation signals" observed at LSND are due to flavor-changing interactions
that conserve total lepton number.Comment: 21 pages, 6 figures, Latex; minor correction
- âŠ