39 research outputs found

    Immersed Boundary Smooth Extension: A high-order method for solving PDE on arbitrary smooth domains using Fourier spectral methods

    Full text link
    The Immersed Boundary method is a simple, efficient, and robust numerical scheme for solving PDE in general domains, yet it only achieves first-order spatial accuracy near embedded boundaries. In this paper, we introduce a new high-order numerical method which we call the Immersed Boundary Smooth Extension (IBSE) method. The IBSE method achieves high-order accuracy by smoothly extending the unknown solution of the PDE from a given smooth domain to a larger computational domain, enabling the use of simple Cartesian-grid discretizations (e.g. Fourier spectral methods). The method preserves much of the flexibility and robustness of the original IB method. In particular, it requires minimal geometric information to describe the boundary and relies only on convolution with regularized delta-functions to communicate information between the computational grid and the boundary. We present a fast algorithm for solving elliptic equations, which forms the basis for simple, high-order implicit-time methods for parabolic PDE and implicit-explicit methods for related nonlinear PDE. We apply the IBSE method to solve the Poisson, heat, Burgers', and Fitzhugh-Nagumo equations, and demonstrate fourth-order pointwise convergence for Dirichlet problems and third-order pointwise convergence for Neumann problems

    Immersed Boundary Smooth Extension (IBSE): A High-Order Method for Solving Incompressible Flows in Arbitrary Smooth Domains

    Get PDF
    The Immersed Boundary method is a simple, efficient, and robust numerical scheme for solving PDE in general domains, yet for fluid problems it only achieves first-order spatial accuracy near embedded boundaries for the velocity field and fails to converge pointwise for elements of the stress tensor. In a previous work we introduced the Immersed Boundary Smooth Extension (IBSE) method, a variation of the IB method that achieves high-order accuracy for elliptic PDE by smoothly extending the unknown solution of the PDE from a given smooth domain to a larger computational domain, enabling the use of simple Cartesian-grid discretizations. In this work, we extend the IBSE method to allow for the imposition of a divergence constraint, and demonstrate high-order convergence for the Stokes and incompressible Navier–Stokes equations: up to third-order pointwise convergence for the velocity field, and second-order pointwise convergence for all elements of the stress tensor. The method is flexible to the underlying discretization: we demonstrate solutions produced using both a Fourier spectral discretization and a standard second-order finite-difference discretization

    Feedback control of flow vorticity at low Reynolds numbers

    Full text link
    Our aim is to explore strategies of feedback control to design and stabilize novel dynamic flow patterns in model systems of complex fluids. To introduce the control strategies, we investigate the simple Newtonian fluid at low Reynolds number in a circular geometry. Then, the fluid vorticity satisfies a diffusion equation. We determine the mean vorticity in the sensing area and use two control strategies to feed it back into the system by controlling the angular velocity of the circular boundary. Hysteretic feedback control generates self-regulated stable oscillations in time, the frequency of which can be adjusted over several orders of magnitude by tuning the relevant feedback parameters. Time-delayed feedback control initiates unstable vorticity modes for sufficiently large feedback strength. For increasing delay time, we first observe oscillations with beats and then regular trains of narrow pulses. Close to the transition line between the resting fluid and the unstable modes, these patterns are relatively stable over long times

    The role of body flexibility in stroke enhancements for finite-length undulatory swimmers in viscoelastic fluids

    Get PDF
    The role of passive body dynamics on the kinematics of swimming micro-organisms in complex fluids is investigated. Asymptotic analysis of small-amplitude motions of a finite-length undulatory swimmer in a Stokes-Oldroyd-B fluid is used to predict shape changes that result as body elasticity and fluid elasticity are varied. Results from the analysis are compared with numerical simulations and the numerically simulated shape changes agree with the analysis at both small and large amplitudes, even for strongly elastic flows. We compute a stroke-induced swimming speed that accounts for the shape changes, but not additional effects of fluid elasticity. Elasticity-induced shape changes lead to larger-amplitude strokes for sufficiently soft swimmers in a viscoelastic fluid, and these stroke boosts can lead to swimming speed-ups. However, for the strokes we examine, we find that additional effects of fluid elasticity generically result in a slow-down. Our high amplitude strokes in strongly elastic flows lead to a qualitatively different regime in which highly concentrated elastic stresses accumulate near swimmer bodies and dramatic slow-downs are seen

    Elastic Waves in Exterior Domains Part II: Global Existence with a Null Structure

    No full text
    corecore