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Immersed Boundary Smooth Extension (IBSE): A high-order method for
solving incompressible flows in arbitrary smooth domains

David B. Steina,∗, Robert D. Guya, Becca Thomasesa

aDepartment of Mathematics, University of California, Davis, Davis, CA 95616-5270, USA

Abstract

The Immersed Boundary method is a simple, efficient, and robust numerical scheme for solving PDE in gen-
eral domains, yet for fluid problems it only achieves first-order spatial accuracy near embedded boundaries
for the velocity field and fails to converge pointwise for elements of the stress tensor. In a previous work
we introduced the Immersed Boundary Smooth Extension (IBSE) method, a variation of the IB method
that achieves high-order accuracy for elliptic PDE by smoothly extending the unknown solution of the PDE
from a given smooth domain to a larger computational domain, enabling the use of simple Cartesian-grid
discretizations. In this work, we extend the IBSE method to allow for the imposition of a divergence con-
straint, and demonstrate high-order convergence for the Stokes and incompressible Navier-Stokes equations:
up to third-order pointwise convergence for the velocity field, and second-order pointwise convergence for
all elements of the stress tensor. The method is flexible to the underlying discretization: we demonstrate
solutions produced using both a Fourier spectral discretization and a standard second-order finite-difference
discretization.

Keywords: Embedded boundary, Immersed Boundary, Incompressible Navier-Stokes, Fourier spectral
method, Complex geometry, High-order

1. Introduction

The Immersed Boundary (IB) method was originally developed for the study of moving, deformable
structures immersed in a fluid, and it has been widely applied to such problems since its introduction [1–3].
Recently, the method has been adapted to more general fluid-structure problems, including the motion of
rigid bodies immersed in a fluid [4] and fluid flow through a domain with either stationary boundaries or
boundaries with prescribed motion [5, 6]. In this broadened context, we use the term Immersed Boundary
method to refer only to methods in which (i) the boundary is treated as a Lagrangian structure embedded
in a geometrically simple domain, (ii) the background PDE (e.g. the Navier-Stokes equations) are solved on
a Cartesian grid everywhere in that domain, and (iii) all communication between the Lagrangian structure
and the underlying PDE is mediated by convolutions with regularized δ-functions. These methods have
many desirable properties: they make use of robust and efficient Cartesian-grid methods for solving the
underlying PDE, are flexible to a wide range of problems, and are simple to implement, requiring minimal
geometric information and processing to describe the boundary.

The IB method belongs to the broad category of methods known as embedded boundary (EB) methods,
including the Immersed Interface [7], Ghost Fluid [8], and Volume Penalty methods [9]. These methods
share a common feature: they enable solutions to PDE on nontrivial domains to be computed using efficient
and robust structured-grid discretizations; yet these methods differ largely in how boundary conditions are
enforced and whether or not the solution is produced in the entirety of a simple domain. Methods which
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compute the solution everywhere in a d-dimensional rectangle admit the simplest discretizations and enable
the use of high-order discretizations such as Fourier spectral methods. Unfortunately, this simplicity comes
coupled with a fundamental difficulty: the analytic solution to these problems is rarely globally smooth
on the entire domain. Consider the one-dimensional Poisson problem ∆u = f on the periodic interval
T = [0, 2π] with Dirichlet boundary conditions u(a) = u(b) = 0 for a 6= b ∈ T. Even if f ∈ C∞(T),
the solution u will typically display jumps in its derivative at the values x = a and x = b. The lack of
regularity in the analytic problem leads to low-order convergence in many numerical schemes, including the
Immersed Boundary method: the addition of (regularized) singular forces supported at the boundary causes
the solution to be C0, and solutions are accurate only to first-order in the grid spacing ∆x [4, 5].

The advantages of EB methods are substantial enough that significant effort has been expended on
improving their accuracy [10–26]. Two different approaches are generally taken. The first approach involves
locally altering the discretization of the PDE in the vicinity of the boundary to accommodate the lack of
smoothness in the solution. One example of this approach is the Immersed Interface method [7]. Such
approaches are particularly useful for interface problems where the solution is required on both sides of the
embedded boundary. When the solution is only needed on one side of the interface, a second approach may
be taken in which variables are redefined outside of the domain of interest to obtain higher global regularity.
Improved convergence rates are achieved as a natural consequence of the properties of the discretization
scheme when applied to smooth problems. Variations of this basic idea have been used by the Fourier
Continuation (FC) [23–25] and the Active Penalty (AP) [26] methods to provide high order solutions to
PDE on general domains.

In [27], we introduce another approach: the Immersed Boundary Smooth Extension (IBSE) method for
the solution of the Poisson and related problems (e.g. the heat equation and Burgers equation). The IBSE
method builds off of the basic framework of the direct forcing IB method. Drawing on ideas from the AP and
FC methods, the IBSE method remedies the slow convergence of the direct forcing IB method by solving an
auxiliary problem to extend the unknown solution from the physical domain into the entire computational
domain. This extension is used to define the body forcing in the non-physical portion of the domain, forcing
the solution to be globally Ck. High-order accuracy is then achieved naturally, up to O(∆xk+1) or the
maximum accuracy supported by the underlying discretization for a smooth problem.

In this paper, we extend the work from [27] to apply to PDE requiring the imposition of a divergence
constraint, including the Stokes and Navier-Stokes equations. This is a non-trivial difficulty for a high-
order embedded boundary scheme based on smooth extensions. Prior work has either been restricted to
the compressible Navier-Stokes equations [23], or has dealt with the pressure in an ad-hoc manner, limiting
the overall accuracy of the numerical scheme to second-order [26]. These methods either extend the forcing
function or solution from a prior timestep, and are thus unable to provide solutions to the Stokes problem.
For time-dependent problems, they require either explicit timestepping or the use of Alternating-Direction-
Implicit (ADI) schemes to take implicit timesteps, complicating the ability to achieve high-order accuracy
in time.

In contrast, we work directly with the Stokes equations, rather than employing dimensional splitting
or decoupling the problem into a set of Poisson equations. The smooth extensions to the solution of the
Stokes equation define forcing functions in the non-physical domain in a coupled manner, and the Lagrange
multipliers supported on the boundary that define these extensions are fully coupled through the Stokes
problem, eliminating any need to impose artificial boundary conditions for a pressure Poisson equation.
The IBSE method smoothly extends the unknown solution, allowing for efficient direct solutions of the
steady incompressible Stokes equation and simple high-order in time implicit-explicit time discretization of
the Navier-Stokes equations. Remarkably, the fully coupled problem for the solution to the incompressible
Stokes equations (combined with the equations that define the smooth extensions to the velocity and pressure
fields) can be reduced to the solution of a relatively small1 dense system of equations, two Stokes solves on a
simple domain ignoring the internal boundary, and a handful of fast Fourier transforms. The dense system
depends only on the boundary and the discretization, and so it can be formed and prefactored to allow for
efficient time-stepping.

1With size a small multiple of the number of points used to discretize the boundary
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The IBSE method retains the essential robustness and simplicity of the original IB method. All com-
munication between the Lagrangian boundary and the underlying Cartesian grid is achieved by convolution
with regularized δ-functions or normal derivatives of those δ-functions. This allows an absolute minimum
of geometric information to be used. In the traditional IB method, only the position of the Lagrangian
structure must be known; the IBSE method additionally requires normals to that structure and an indi-
cator variable denoting whether Cartesian grid points lie inside or outside of the physical domain where
the PDE is defined. As with the IB method, the IBSE method is flexible to the choice of the underlying
PDE discretization, so long as the mesh is uniform in the vicinity of the immersed boundary, facilitating
simple coupling to existing code. In this paper, we demonstrate the IBSE solver with an underlying Fourier
spectral discretization as well as a second-order staggered-grid finite difference discretization.

This paper is organized as follows. In Section 2, we introduce the methodology, ignoring the details
of the numerical implementation. This section includes a review of the relevant methodology introduced
in [27]. In Section 3, we discuss the numerical implementation of the method, not including the choice of
the underlying discretization of the PDE. In Section 4, we study a steady Stokes problem with an analytic
solution, using a Fourier spectral discretization. We analyze the convergence of the velocity and pressure
fields, as well as derivatives of the velocity fields. We demonstrate up to third-order pointwise convergence
of the velocity fields, as well as second-order pointwise convergence of all elements of the stress tensor. In
Section 5, we analyze the flow of a viscous incompressible fluid around a cylinder in a confined channel at
zero Reynolds number. We solve the problem using both a Fourier spectral discretization and a second-
order finite difference discretization, comparing the accuracy and convergence of the solution, as well as
the convergence of the scalar drag coefficient to known values from the literature. Finally, in Section 6, we
solve the incompressible Navier-Stokes equations in both steady and unsteady cases, for the flow around a
cylinder in a confined channel, demonstrating rapid convergence and quantitative agreement with a number
of benchmarks from the literature.

2. Methods

We begin by considering the time-dependent, incompressible Navier-Stokes equations:

∂tu + u · ∇u− ν∆u +∇p = fu in Ω, (1a)

∇ · u = 0 in Ω, (1b)

u = b on Γ, (1c)

where the boundary of the domain Ω is denoted by Γ = ∂Ω. One way to discretize these equations in time
is to treat the non-linearity explicitly, and to treat the Stokes operator implicitly. The simplest such time
discretization, using forward Euler for the nonlinear terms and backward Euler for the remaining terms, is

(I− ν∆t∆)ut+∆t + ∆t∇pt+∆t = ut + ∆t
(
f t+∆t
u − ut · ∇ut

)
in Ω, (2a)

∇ · ut+∆t = 0 in Ω, (2b)

ut+∆t = bt+∆t on Γ. (2c)

Although the Navier-Stokes equations are often discretized in time using projection methods [28], these
discretizations produce large splitting errors near the boundary at low Reynolds number. Implicit-Explicit
time-discretizations of the form of Equation (2) eliminate these errors, and are simpler to generalize to higher-
order in time schemes (see Section 6). The unsplit Stokes system may be inverted efficiently using GMRES
with a projection preconditioner [29]. We find this inversion strategy to be very efficient (convergence to an
algebraic tolerance of 10−10 achieved in 3-4 iterations) for moderate to high Reynolds numbers (Re ≥ 1),
and moderately efficient (convergence achieved in approximately 35 iterations) for the Stokes problem where
projection methods cannot be used.

3



0 π 2π
0

π

2π

Ω

(a) Irregular domain

−1 0 1
0

1

Ω

CE

u = 0

u = 0

u
=

In
flo

w

u
=

O
ut

flo
w

Γ

(b) Flow around cylinder

Figure 1: Two different and typical domains to solve PDE on. The physical domain Ω is shown in white, the extension domain
E is denoted by crosshatches. Figure 1a shows an irregular interior domain. The computational domain C is the 2-torus,
T2 = [0, 2π] × [0, 2π]. For this domain it is convenient to take CE = C. Figure 1b shows a domain that would be used to
compute flow around a cylinder. The computational domain C is taken to be [−1, 1]× [0, 1], with Dirichlet boundary conditions
specified along ∂C (homogeneous for the channel walls at the top and bottom, and specified inflow and outflow conditions at
the left and right boundaries of C). The extension is computed on the domain CE , shown in gray. For this domain CE does
not coincide with C but does contain E. No slip boundary conditions would be imposed on Γ, the interior boundary that
separates Ω and E.

Motivated by the form of Equation (2), in this section we focus primarily on developing the methodology
required to solve the general Stokes problem:

(αI−∆)u +∇p = fu in Ω, (3a)

∇ · u = fp in Ω, (3b)

u = b on Γ. (3c)

When α = 0 and fp = 0, Equation (3) reduces to the steady incompressible Stokes equations. The case where
α > 0 arises in the study of porous media [30] and from discretizing the Navier-Stokes equations in time
using an implicit-explicit discretization, as in Equation (2). The non-zero divergence constraint (fp 6= 0)
adds no additional complexity and is included for completeness. Before discussing the IBSE method as
applied to Equation (3), we first review relevant material from [27], in order to introduce the central ideas
in the simplified context of the Poisson problem.

2.1. Review of [27]: the IBSE method for the Poisson problem

Suppose that we wish to solve the Poisson problem

∆u = f in Ω, (4a)

u = g on Γ, (4b)

in an arbitrary smooth domain Ω. The IBSE method works by smoothly extending the unknown solution u
of a PDE from Ω to a simplier domain C. The domain Ω will be referred to as the physical domain and C
will be referred to as the computational domain. It is assumed that Ω ⊂ C. The interior boundary Γ = ∂Ω
will be assumed to be smooth, not self-intersecting, and must separate C into the two disjoint regions Ω
and E = C \ Ω, referred to as the extension domain. Neither Ω nor E need be connected. An additional
simple computational domain CE is required to solve the auxiliary equation that defines the extension of
the unknown solution. Although CE may coincide with C, it need only contain E. The boundary of the
computational domain C will be denoted by ∂C. Two typical domains are shown in Figure 1. In Figure 1a,
C is periodic, and no boundary conditions need to be specified on ∂C. In Figure 1b, Dirichlet conditions
are imposed on ∂C. To prevent confusion with the interior boundary Γ, the boundary ∂C and its respective
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boundary condition will only be explicitly included in equations when required to prevent confusion, e.g. in
Sections 3.4 and 5.2.

We will denote the extension of the unknown solution u by ξ. This extension of the solution is then used
to define a volumetric forcing Fe = ∆ξ in the region E. With this forcing, an extended problem in all of
the simple domain C may be solved:

∆ue − χEFe = χΩf in C, (5a)

ue = g on Γ. (5b)

The solution ue gives the desired solution u in Ω and is equal to ξ in E. Because ξ was chosen to be a
smooth extension to u, the function ue is globally smooth in C.

The extension ξ to the unknown function u is defined as a solution to a high-order PDE which takes for

its boundary conditions matching criteria of the form ∂jξ
∂nj = ∂ju

∂nj . This allows the extension to be defined
by a small number of unknowns (proportional to the number of points used to discretize the boundary).
The extension PDE for ξ is solved efficiently in the simple domain CE using an Immersed Boundary type
method.

In order to succinctly describe the methodology we will require some notation. We define the spread
operator :

(S(j)F )(x) = (−1)j
ˆ

Γ

Fj(s)
∂jδ(x−X(s))

∂nj
dX(s) (6)

and the interpolation operator :

(S∗(j)ξ)(s) = (−1)j
ˆ
C

ξ(x)
∂jδ(x−X(s))

∂nj
dx (7)

for the jth normal derivative, where X(s) is a parametrization for Γ with s in the parameter interval IΓ.

The integral on the right hand side of Equation (7) is notation for the action of the distribution ∂jδ
∂nj on

the smooth function ξ. The traditional Immersed Boundary spread and interpolation operators, S(0) and
S∗(0) are denoted by S and S∗ respectively. The interpolation operator maps function values (or the normal

derivatives of the function) from C to Γ, while the spread operator maps singular (and hyper-singular)
forces supported on Γ to C. To simplify equations presented in the forthcoming material, we also define the
operators Tk, T ∗k , and R∗k by:

Tk =

k∑
j=0

S(j), (8a)

T ∗k =
(
S∗(0) S∗(1) · · · S∗(k)

)ᵀ
, (8b)

R∗k =
(
S∗(1) · · · S∗(k)

)ᵀ
. (8c)

The operator T ∗k provides an interpolation of a function and its first k normal derivatives to the boundary;
R∗k provides an interpolation of the first k normal derivatives to the boundary, but excludes the values;
the spread operator Tk represents a set of singular forces (δ-like) and hyper-singular forces (like the first k
normal derivatives of the δ-function) on the boundary.

The central challenge of the IBSE method is to compute the smooth extension to an unknown solution.
We first discuss how to compute an extension to a given function. Let v ∈ Ck(Ω) be given. To compute a
Ck(C) extension to v, we solve the following high-order PDE in the region E:

Hkξ = 0 in E, (9a)

∂jξ

∂nj
=
∂jv

∂nj
on Γ, 0 ≤ j ≤ k. (9b)
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Here Hk is an appropriate differential operator such as the polyharmonic operator ∆k+1; we discuss the
choice of this operator in more detail, from a numerical perspective, in Section 3.2. This problem may
be solved on the simpler domain CE using methodology directly analogous to the direct forcing Immersed
Boundary method. The boundary conditions given in Equation (9b) that force ξ to share its first k normal
derivatives with v along Γ are approximated using the operators S∗(j). Unknown singular and hyper-singular

forces (F ) supported on Γ are regularized and spread to the underlying grid by the operator Tk:

Hkξ(x) + (TkF )(x) = 0 for x ∈ CE , (10a)

(S∗(j)ξ)(s) =
∂jv

∂nj
(s) for s ∈ IΓ, 0 ≤ j ≤ k. (10b)

The unknown forces F act as Lagrange multipliers enforcing the approximate boundary conditions. Future

equations similar to Equation (10b) will be shortened simply to S∗(j)ξ = ∂jv
∂nj , and assumed to hold for all

s ∈ IΓ. Notice that ξ is not actually an extension to v: that is, ξ(x) 6= v(x) in Ω. We will only be interested
in the function ξ in E, and so need not form its literal extension (which is χΩv + χEξ).

To solve the Poisson problem given by Equation (4) using the IBSE method, we instead solve the extended
problem given in Equation (5). The forcing function Fe that is specified in E must be chosen so that it
forces the extended solution ue to be Ck(C). Let ξ smoothly extend u, that is, we ask that ξ is globally
smooth in C and that it satisfies the constraints

R∗kξ = R∗ku (11)

at the interface Γ. These constraints require that the first k normal derivatives of ξ agree with the first k
normal derivatives of u on the boundary. Notice that it is not enforced that the values of u agree with the
values of ξ on Γ; we will see momentarily that this is unnecessary. The forcing function Fe is then defined
as:

Fe = ∆ξ. (12)

Coupling these equations together, we obtain the IBSE formulation for the Poisson problem given by Equa-
tion (4):

∆ue − χE∆ξ = χΩf in C, (13a)

Hkξ + TkF = 0 in CE , (13b)

R∗kξ = R∗kue, (13c)

S∗ue = 0. (13d)

These equations are (13a) the extended Poisson problem, (13b) the extension PDE, (13c) the interface
constraints that force u and ξ to share their first k normal derivatives, and (13d) the physical boundary
condition to the Poisson problem. Both the interface constraints and the physical boundary condition are
enforced by the unknown forces F in the extension PDE. We will subsequently drop the notation ue and
refer to the solution ue of the IBSE system of equations simply as u.

In Ω, u satisfies the physical Poisson equation; while in E, u satisfies:

∆u = ∆ξ in E, (14a)

∂u

∂n
=
∂ξ

∂n
on Γ, (14b)

and thus u = ξ in E up to a constant. Since Hkξ = −TkF implies that ξ ∈ Hk+1(C), then for k ≥ 1, the
forcing χΩf +χE∆ξ ∈ L2(C), and so u ∈ H2(C), and is thus at least C0(C) (for spatial dimensions d ≤ 3)2.

2The notation Hl(Ω) denotes the space of measurable functions with the property that the function itself, as well as its first
l weak derivatives, are square integrable. The Sobolev embedding theorem implies that any function in H2(Ω) is equal almost
everywhere to a continuous function, at least in spatial dimensions d = 2 and d = 3 [31].
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This continuity, along with the smoothness constraints guaranteed by the constraint that R∗kξ = R∗ku imply
that u is globally Ck(C).

In [27], we verify that the IBSE-k formulation of the problem produces Ck(C) solutions that converge at
a rate of O(∆xk+1)3 in the grid-spacing ∆x across a wide range of Poisson and Poisson-like problems. This
is demonstrated for k = 1, 2, and 3, corresponding to solutions that converge at a rate of second, third, and
fourth order in space for the Poisson problem, and at the same rate in space and fourth-order in time for
the heat, Burgers, and the Fitzhugh-Nagumo equations.

Remark 1. In [27], both a volumetric force χE∆ξ and a singular force distribution SG are added to the
Poisson equation, giving a slightly different formulation for the IBSE method:

∆ue − χE∆ξ + SG = χΩf in C, (15a)

Hkξ + TkF = 0 in CE , (15b)

T ∗k ξ = T ∗k ue, (15c)

S∗ue = 0. (15d)

The singular force distribution SG acts to enforce that the boundary values of ξ equal those of u, this is
an unnecessary requirement for the IBSE method. We will proceed with the simpler formulation given in
Equation (13) when developing the methodology for the Stokes equation.

2.2. Solution of the general Stokes problem

We now focus on the modifications to the IBSE method required to solve the general Stokes problem:

Lu +∇p = fu in Ω, (16a)

∇ · u = fp in Ω, (16b)

B(u, p) = b on Γ. (16c)

We assume that f = (fu, fp) and b are sufficiently smooth functions defined on Ω (for f) and Γ (for b).
Here L denotes the Helmholtz operator L = αI − ∆ and B denotes a boundary operator. We discuss the
boundary operator associated with the Dirichlet problem (B(u, p) = u|Γ); imposition of other boundary
conditions is similar and discussed in [27]. Note that this equation reduces to the incompressible Stokes
problem when α and fp are zero.

In the direct forcing Immersed Boundary (IB) method, this problem is solved in a simple computational
domain C by adding singular forces G supported on the boundary that act as Lagrange multipliers which
enforce the boundary condition. For Dirichlet problems this can be represented as

Lu +∇p+ SG = fu in C, (17a)

∇ · u = fp in C, (17b)

S∗u = b. (17c)

The singular forces supported on Γ induce jumps in the normal derivatives of u at the boundary; the
velocities u produced by the IB method are generically C0(C) while the pressure field typically has jump
discontinuities. For Eulerian discretizations of the underlying PDE that are ignorant of the boundary, this
leads to the slow convergence rate O(∆x) for the velocity field in L∞(Ω). The pressure field p fails to
converge near to the boundary, but does converge at the rate O(

√
∆x) in L2(Ω).

In order to improve this convergence, the Immersed Boundary Smooth Extension (IBSE) method extends
the unknown solutions u and p to be Ck(C) and Ck−1(C), respectively. Suppose that the solution vector

3Convergence at the rate of O(∆xk+1) is observed for problems with Dirichlet boundary conditions. For Neumann problems,
the convergence is O(∆k)[27].
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(u, p) to Equation (16) is known in Ω. Define ξu by

Hkξu + TkFu = 0 in CE , (18a)

R∗kξu = R∗ku, (18b)

and ξp by

Hk−1ξp + Tk−1Fp = 0 in CE , (19a)

T ∗k−1ξp = T ∗k−1p. (19b)

Recall that Hk is a high-order differential operator such as ∆k+1, which will be defined precisely in Sec-
tion 3.2, and that Fu and Fp are unknown singular and hyper-singular forces that act as Lagrange multipliers
to enforce the constraints given by Equations (18b) and (19b). We make two remarks concerning the exten-
sion of the pressure.

Remark 2. The pressure function p is typically thought of as a Lagrange multiplier: it equals whatever is
required to enforce the divergence constraint that ∇·u = 0. One may suspect therefore that it is unnecessary
to construct an explicit extension of the pressure function p as we do in Equation (19). Unfortunately, this
is not true. Consider the problem:

−∆u +∇p = fu in Ω, (20a)

∇ · u = 0 in Ω, (20b)

u = b on Γ, (20c)

along with the modified problem where fu is replaced by f̃u = fu+∇φ for any scalar function φ. The pressure
will be changed: p̃ = p− φ. But the solution u will be left unchanged, and thus its extension functions ξu
will be unchanged. If the extension of the pressure function depends only locally on ξu, it cannot extend
both p and p̃ smoothly.

Remark 3. The choice to extend the pressure function p to be Ck−1(C) rather than Ck(C) yields improved
numerical stability. When u ∈ Ck(C), the structure of the Stokes equations implies that p ∈ Ck−1(C).
Applying the operator T ∗k to the function p with that global regularity yields an inconsistent estimate of
∂kp
∂nk , i.e. S∗(k)p = ∂kp

∂nk +O(1), and thus enforcing that T ∗k ξp = T ∗k p does not actually enforce that
∂kξp
∂nk = ∂kp

∂nk .

From these extensions, we may define a set of forces (Fu,Fp):

Fu = Lξu +∇ξp, (21a)

Fp = ∇ · ξu. (21b)

Analogous to Equation (5), to smoothly extend the Stokes problem given by Equation (16) from Ω to C,
we add Fu to Equation (16a) and Fp to Equation (16b) in the extension region E to obtain

Lu +∇p = χΩfu + χELξu + χE∇ξp in C, (22a)

∇ · u = χΩfp + χE∇ · ξu in C, (22b)

B(u, p) = b on Γ. (22c)

In the physical domain Ω, we have that

Lu +∇p = fu in Ω, (23a)

∇ · u = fp in Ω, (23b)

B(u, p) = b on Γ, (23c)
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and thus (u, p) solves the original Stokes problem given in Equation (16). In the extension domain E, we
have that

L(u− ξu) +∇(p− ξp) = 0 in E, (24a)

∇ · (u− ξu) = 0 in E, (24b)

∂(u− ξu)

∂n
= 0 on Γ. (24c)

Thus u = ξu and p = ξp, both up to a constant (in E). Since ξp is enforced to match p at the boundary by
Equation (19), they are equal at the boundary, and thus p = ξp in E, implying that p is globally smooth
in C, while the global regularity for u is implied by the same argument given in Section 2.1. Numerical
approximations of these solutions may converge rapidly, even when the PDEs are discretized using an
underlying Cartesian grid discretization that is ignorant of the boundary. The difficulty in this formulation
comes from the fact that the extensions ξu and ξp depend on the unknown solution (u, p).

Combining Equations (16), (18) and (19), we obtain a coupled system for the solution (u, p) together
with the smooth extensions (ξu, ξp) to that solution:

Stokes eq.

{
Lu +∇p− χELξu − χE∇ξp = χΩfu in C,

∇ · u− χE∇ · ξu = χΩfp in C,

(25a)

(25b)

Extension eq.

{
Hkξu + TkFu = 0 in CE ,

Hk−1ξp + Tk−1Fp = 0 in CE ,

(25c)

(25d)

Bdy. matching

{
R∗kξu = R∗ku,

T ∗k−1ξp = T ∗k−1p,

(25e)

(25f)

Phys. Bdy. Cond. S∗u = b. (25g)

We will refer to this system of equations as the IBSE-k equations. The remainder of this paper is
dedicated to demonstrating that these equations provide accurate solutions to the Stokes and Navier-Stokes
equations, that they allow a flexible choice of discretization, and that they admit an efficient inversion
strategy. We organize the presentation of information as follows:

1. In Section 3, we discuss the details of numerical implementation that do not depend upon the under-
lying choice of discretization.

2. In Section 4, we empirically select the regularization parameter N introduced in Section 3.2 and solve a
Stokes problem with an analytic solution that allows us to carefully verify the convergence rates of the
solution (u, p) (up to third-order for u and second-order for p, in L∞(Ω)), as well as the convergence
of elements of the fluid stress tensor σ (up to second-order in L∞(Ω)).

3. In Section 5, we describe both a Fourier spectral and a finite-difference discretization to the confined
channel flow around a cylinder problem for incompressible Stokes flow. We validate the convergence
rates for solutions produced by the IBSE method and compare to known benchmarks.

4. In Section 6, we discuss time-stepping in the IBSE framework, solve both steady and unsteady Navier-
Stokes problems, and demonstrate rapid convergence of the solutions and agreement with known
benchmarks.

3. Numerical implementation

In this section, we discretize the coupled IBSE-k system given in Equation (25). We assume that the
functions are discretized using an underlying Cartesian mesh with uniform4 grid-spacing ∆x but otherwise

4For the discretization described here, the mesh needs to be uniform only in a small neighborhood of the boundary, with
the same width as the regularized δ-function used to discretize the operators S(j) and S∗

(j)
. In fact, the mesh need not even be
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make no assumptions regarding the underlying discretization of the functions and differential operators.
These final details will be treated in Section 4 for a Fourier spectral discretization, and in Section 5.2 for a
standard second-order finite difference scheme. Little varies in the details.

1. In Section 3.1, we discretize the spread (S(j)) and interpolation (S∗(j)) operators for the jth normal

derivative that were introduced in Equations (6) and (7). Note that the discretization of these oper-
ators automatically induces a discretization for the composite operators Tk, T ∗k , and R∗k, defined in
Equation (8).

2. In Section 3.2, we discuss how we choose the extension operator Hk introduced in Equation (10).
3. In Section 3.3, we describe an efficient inversion strategy for the IBSE-k system given by Equation (25).
4. In Section 3.4, we provide a brief summary of the algorithm.

3.1. Discretization of singular integrals

Let the boundary Γ be parametrized by the function X(s). In all examples in this manuscript, we work
with a two-dimensional fluid, and the boundary Γ is one-dimensional and closed, with the single parameter
s defined on the periodic interval [0, 2π]. The discrete version of the spread operator for the jth normal
derivative, S(j) : Γ → C defined in Equation (6) requires a regularized δ-function and a discretization of

the integral over Γ. The regularized δ-function that we use will be denoted by δ̃ and is constructed as the
Cartesian product of a one-dimensional regularized δ-function denoted by δ̃1 that is analytically three times
differentiable, satisfies four discrete moment conditions, and has a support width of 16∆x. The δ̃1-function
and its properties are introduced in [27, 33]. Normal derivatives of δ̃ are computed by the formula [34]

∂j δ̃

∂nj
= ni1 · · ·nij

∂j δ̃

∂xi1 · · · ∂xij
, (26)

where the Einstein summation convention has been used to indicate sums over repeated indices and
∂j δ̃/∂xi1 · · · ∂xij is computed as Cartesian products of the appropriate derivatives of δ̃1. For example, in

two dimensions ∂δ̃/∂n is computed as

∂δ̃

∂n
= nxδ̃

′
1 ⊗ δ̃1 + ny δ̃1 ⊗ δ̃′1, (27)

where δ̃′1 denotes the first derivative of δ̃1.
Discretization of the integral over Γ is made by choosing nbdy quadrature nodes Γ̃ = {Xi}nbdy

i=1 , equally
spaced in the parameter interval IΓ = [0, 2π] so thatXi = X(si) and si = (i−1)2π/nbdy. Quadrature weights
are computed at each quadrature node to be ∆si =

∥∥∂X
∂s (si)

∥∥
2
; this is a spectrally accurate quadrature rule

for the integral of smooth periodic functions on Γ. The discrete spread operator S(j) maps functions sampled

at points in Γ̃ to C by

(S(j)F )(x) =

nbdy∑
i=1

F (si)
∂j δ̃(x−Xi)

∂nj
∆si. (28)

We do not adopt explicit notation to distinguish between the analytic and discrete operators. The number
of points in the quadrature is chosen so that ∆s ≈ 2∆x. This choice of node-spacing is wider than that
recommended for the traditional IB method [1] but has been observed empirically to be the optimal choice
in other studies of direct-forcing IB methods [4]. We define the interpolation operator S∗(j) by the adjoint

property
〈
u, S(j)F

〉
C

=
〈
S∗(j)u, F

〉
Γ
, but note that the discrete interpolation operator S∗(j) produces a

discrete function

(S∗(j)u)(sk) =

ˆ
C

u(x)
∂j δ̃(x−Xk)

∂nj
dx. (29)

uniform, but this would add some complexity to the discretization [32].
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Discrete integrals over C are straightforward sums computed over the underlying uniform Cartesian mesh,
and may be efficiently evaluated due to the finite support of δ̃. When acting on vector functions, all operators
defined in this section are assumed to operate elementwise.

3.2. Solution of the extension equations and the choice of extension operator Hk
Due to the difficulty in accurately and efficiently inverting the high-order differential operator needed to

define the smooth extensions, we solve these equations utilizing a Fourier spectral discretization regardless
of the discretization used for the Stokes equations. Let m be the largest wave-number associated with the
discrete Fourier transform (DFT) on the discretized domain CE . We choose the extension operator Hk
introduced in Equation (9) to be:

Hk = ∆k+1 + (−1)k+1Θ(k,m). (30)

Here Θ is a positive scalar function that depends on the smoothness of the extension (k) and the largest
wave-number (m). The function Θ is chosen to mitigate the numerical condition number of the operator
Hk:

κ = 1 +
m2(k+1)

Θ
. (31)

Minimizing the condition number κ (by taking Θ to be large) must be balanced against the need to resolve
the intrinsic length scale L = Θ−1/2(k+1) introduced to the problem. We set the length scale L as a function
of ∆x, in effect allowing the extension to decay to zero over some number of grid cells. We thus choose

Θ∗ =

(
1

N∆x

)2(k+1)

, (32)

where N is proportional to the number of gridpoints over which the extension decays. The choice of N
can impact the accuracy of the scheme: if N is too large, the condition number of Hk may be high with
respect to the precision of the computer being used, and numerical instability causes a degradation of the
quality of the solution. If N is too small, short length scales that are not resolvable by the discretization are
introduced to the problem. For all examples presented in this paper, N is chosen to be 200. In Section 4,
we investigate the effect of the choice of N on a specific problem.

3.3. Inversion of the IBSE-k system, Equation (25)
In this section, we describe an efficient inversion strategy for Equation (25). We will assume that the

discrete Stokes operator is invertible5. The details for when it is not invertible (e.g. when solving on a
periodic domain with L = −∆) are analogous to the Poisson problem, and the solution is presented in [27].
In matrix form, Equation (25) is given by:

L ∇ −χEL −χE∇
∇· −χE∇·

Hk Tk
Hk−1 Tk−1

S∗

R∗k −R∗k
T ∗k−1 −T ∗k−1




u
p
ξu
ξp
Fu

Fp

 =



χΩfu
χΩfp

0
0
b
0
0


. (33)

This system is large, but the number of constraints (the last three equations) is relatively small. By block
Gaussian elimination, we can find a Schur-complement for this matrix, which we label SC:

SC =

S∗R∗k −R∗k
T ∗k−1 −T ∗k−1



L ∇ −χEL −χE∇
∇· −χE∇·

Hk
Hk−1


−1

0 0
0 0
Tk 0
0 Tk−1

 (34)

5The null-space in the pressure function p should be fixed by the discrete operator; e.g. by enforcing that
´
C p = 0.
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along with an associated system of equations for the Lagrange multipliers Fu and Fp,

(
SC

)(
Fu

Fp

)
=

S∗R∗k
T ∗k−1

( L ∇
∇·

)−1(
χΩfu
χΩfp

)
−

b
0
0

 . (35)

The size of SC is comparatively small, only (2(k + 1) + k)nbdy square. This equation is the key to the
efficiency of the algorithm, as it allows the Lagrange multipliers Fu and Fp to be computed rapidly without
first solving for u, p, ξu, or ξp. Once Fu and Fp are determined, ξu and ξp may be found by solving
Equations (25c) and (25d). With ξu and ξp known, u and p may be computed simply by solving the Stokes
equation in C, ignoring the boundary Γ (that is, by solving Equations (25a) and (25b)).

Rapid inversion of the system of equations for Fu and Fp given in Equation (35) is not a trivial task.
Because we have restricted to problems set on stationary domains and the size of SC is small, it is feasible to
proceed using dense linear algebra. We form SC by repeatedly applying it to basis vectors. This operation
is expensive: for two dimensions it is O(N3/2 logN) in the total number of unknowns N = n2. The Schur-
complement is then factored by the LU algorithm provided by LAPACK [35]. Once this factorization is
computed Equation (35) can be solved rapidly. This Schur-complement depends only on the domain and
the discretization, so the LU-decomposition can be reused to solve multiple problems on the same domain
or in each timestep when solving time-dependent problems.

3.4. Outline of the methodology

We provide a brief outline of the steps required for solving the general Stokes problem given by Equa-
tion (16) using the IBSE-k method. The algorithm proceeds as follows:

1. Form the right hand side of the Schur-complement equation, as defined in Equation (35). This may
be done by solving

Lu0 +∇p0 = χΩfu in C, (36a)

∇ · u0 = χΩfp in C, (36b)

B(u0, p0) = bC on ∂C, (36c)

for (u0, p0) and then computing S∗u0 − b, R∗ku0 and T ∗k−1p0. Note that the internal boundary Γ is
ignored when computing the solution to Equation (36).

2. Compute Fu and Fp by solving the Schur-complement system given by Equation (35), given the right
hand side computed above. We assume that the Schur complement SC has been formed and its LU
decomposition found as a pre-computation.

3. Compute ξu and ξp from Fu and Fp by solving Equations (25c) and (25d). We take CE to always
have periodic boundary conditions, and these equations may be simply inverted using the fast Fourier
transform.

4. With ξu and ξp known, find u and p by solving Equations (25a) and (25b). To be precise, we solve

Lu +∇p = χELξu + χE∇ξp + χΩfu in C, (37a)

∇ · u = χE∇ · ξu + χΩfp in C, (37b)

B(u, p) = bC on ∂C. (37c)

Note again that the internal boundary Γ is ignored when computing this solution.

Step two of this algorithm requires that the Schur-complement SC be formed and factored as a pre-
processing step. The Schur complement operator maps a set of singular (and hyper-singular) forces (Fu, Fp)
to the constraints given by Equations (25e) to (25g). We form the matrix by applying SC to basis vectors.
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To apply SC to any set of singular forces, first compute ξu and ξp from Fu and Fp by solving Equations (25c)
and (25d). Then u and p may be found by solving

Lu +∇p = χELξu + χE∇ξp in C, (38a)

∇ · u = χE∇ · ξu in C, (38b)

B(u, p) = 0 on ∂C, (38c)

and finally with u, p, ξu and ξp known, then S∗u, R∗ku−R∗kξu, and T ∗k−1p−T ∗k−1ξp can be evaluated. Note
that fu, fp and bC do not enter into this computation. The Schur complement SC depends only on the
geometry and the discrete operators L, ∇, ∇·.

4. Results: Stokes equation with analytic solution

To demonstrate the improved convergence properties of the IBSE method as compared to the IB method,
we construct a simple example with an analytic solution and compare the accuracy of the solutions with
those produced by the Immersed Boundary method. For the numerical comparisons with the IB method
provided in this section, we show two sets of values: those produced using a regularized δ-function commonly
used in IB simulations [10]:

8 δ(x) =


3− 2|x|+

√
1 + 4|x| − 4|x|2 0 ≤ x ≤ 1,

5− 2|x| −
√
−7 + 12|x| − 4|x|2 1 < x ≤ 2,

0 2 < x,

(39)

as well as those produced using the smoother and more accurate δ function introduced in [27] and used in
all IBSE simulations in this paper. These two methods will be denoted by IB√· and IB4, respectively. We
solve the general Stokes problem with L = I−∆ and Dirichlet boundary conditions:

u−∆u +∇p = fu in Ω, (40a)

∇ · u = 0 in Ω, (40b)

u = b on Γ, (40c)

where the solution (u, p) is given by

u(x, y) = esin x cos y; v(x, y) = − cosx esin x sin y; p(x, y) = ecos 2x, (41)

the forcing function fu is defined as fu = χΩ (u−∆u +∇p), and the boundary condition b is found by
evaluating u on Γ. The physical domain Ω is taken to be T2 \ B1(2, 2), where T2 denotes the 2-torus
identified with the periodic rectangle [0, 2π]× [0, 2π], and where B1(2, 2) denotes the ball of radius 1 centered
at (2, 2). The computational domain is taken to be C = T2. Plots of the analytic solution (u, p) in the
physical domain Ω are shown in Figure 2. For this computational domain it is convenient to use a Fourier
spectral discretization for C and to choose CE = C. We discretize the domain [0, 2π] × [0, 2π] using a
regular Cartesian mesh with n points discretizing each dimension: ∆x = 2π/n and xj = j∆x for 0 ≤ j < n.
Differential operators are discretized in the usual way.

4.1. Determination of the regularization parameter N

Before analyzing the convergence of solutions produced by the IBSE method, we investigate the choice
of N , the parameter used to regularize the extension operator Hk, as introduced in Equation (32). This
parameter controls the rate at which the extension functions ξu and ξp decay to 0 away from the boundary.
To choose N , we compute solutions with n = 256, using extensions across a wide range of choices of N (from
N = 1 to N = 40000), and for k = 1, k = 2, and k = 3. The L∞(Ω) error for u, and the condition number
of the Schur complement, as a function of N , are shown in Figures 3a and 3b. In Figures 3c and 3d, we
show the extension function ξu for the solution u to Equation (40) for N = 1 and N = 200.
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Figure 2: The analytic solution (u, p) and the physical domain Ω to the problem defined by Equations (40) and (41). The
extension domain E is denoted with crosshatches.

For small values of N , the error is dominated by the inability of the discretization to resolve the small
length scale introduced to the problem by the operatorHk. AsN is increased, the error produced by the IBSE
method improves, but the condition number of the Schur-complement worsens. A steep increase in error is
observed at approximately the same value of N for which the condition number of the Schur complement
matrix exceeds the inverse of machine-epsilon, shown in gray in Figure 3b for a double precision machine.
For k = 1 and k = 2, there is a flat region where the error is dominated by the error due to truncation of
the Fourier series for the solution to the PDE coupled with its smooth extension. For k = 1, this region
is approximately 50 ≤ N ≤ 10000; for k = 2 this region is approximately 100 ≤ N ≤ 750. Other than for
this test, all numerical results in this paper are produced using N = 200 to construct Hk. Similar tests
(across a coarser set of values of N) have been done for all test problems in the paper and across a range
of values of n; the value N = 200 provides optimal or nearly-optimal error in all cases. For k = 3, no value
of N provides optimal results: the error is dominated either by the failure to resolve the artificial length
scale introduced by Hk or by the ill-conditioning of the Schur-complement matrix. Because of this, we have
shown no results for IBSE-36. With the choice of N made, we can now analyze the spatial convergence of

6For Poisson and Poisson-like problems, the conditioning problems are less severe, and the IBSE-3 method is able to achieve
accurate and stable solutions that converge at O(∆x4) [27].
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Figure 3: Figures 3a and 3b show the L∞(Ω) error in u for the solution to Equation (40) and the condition number of the Schur
Complement defined by Equation (34) produced using different values of N . Figures 3c and 3d show the extension function ξu
to u, with n = 256 and k = 2, for N = 1 and N = 200 (the value used in all simulations in this paper, other than this test).
When N is too small (e.g. N = 1) short length scales not fully resolvable by the discretization are introduced to the problem.
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Figure 4: L2(Ω) and L∞(Ω) errors for the solution to Equation (40) for the IB√·(♦), IB4(�), IBSE-1 (4), and IBSE-2 (#)
methods.

the IBSE-1 and IBSE-2 methods.

4.2. Convergence analysis

A refinement study for the L2(Ω) and L∞(Ω) errors in the solutions for u and p is shown in Figure 4. The
refinement path for v is omitted; it is similar to what is shown for u. In L2(Ω), the velocity field u converges
at first-, second-, and third-order accuracy in ∆x for the IB, IBSE-1 and IBSE-2 methods, respectively, while
the pressure field p converges at first- and second-order accuracy for IBSE-1 and IBSE-2, but at the slow
rate of O(

√
∆x) for the IB method. In L∞(Ω), the rates of convergence for the velocity remain unchanged

in all methods, while for the pressure the difference is starker: the IBSE-1 and IBSE-2 methods maintain
first- and second-order convergence, while the IB method fails to converge pointwise.

Remark 4. It may be surprising that the velocity fields produced by the Immersed Boundary method
converge at only first-order in L2(Ω). Indeed, for a given F and b, the velocity fields produced by solving

−∆u +∇p+ SF = 0, (42a)

∇ · u = 0, (42b)

S∗u = b, (42c)

converge at O(∆x), O(∆x3/2), and O(∆x2) in the L∞(Ω), L2(Ω), and L1(Ω) norms, respectively [36].
However, F is not given, it is computed by inverting a Schur-complement equation whose elements include
terms of the form S∗u where u ∈ C0(C), and thus contain O(∆x) errors.

In the refinement study shown in Figure 4, the pressure function converges more slowly than the velocity
function; in the case of the IB method, it fails to converge pointwise. This will be true in general for elements
of the stress tensor, which are one derivative less smooth than the velocity field. In Figure 5, we show a
refinement study for the L2(Ω) and L∞(Ω) errors in the derivatives ∂u/∂x and ∂u/∂y (the convergence
paths for ∂v/∂x and ∂v/∂y are omitted, but essentially the same). A similar pattern to the convergence
of the pressure function is observed: for all of the derivatives, the IB method converges slowly (at O(

√
x))

in L2(Ω), but fails to converge pointwise; the IBSE-1 and IBSE-2 method provide first- and second-order
convergence in both L∞(Ω) and L2(Ω). We emphasize that with pointwise convergence of the pressure
function p as well as pointwise convergence of these derivatives, the IBSE method is able to capture the
stress tensor σ = ν(∇u +∇uᵀ)− pI pointwise up to the boundary Γ.

15



101 102 103

n

10−7

10−6

10−5

10−4

10−3

10−2

10−1

L
2

er
ro

r
in

Ω

√
∆x

∆x1

∆x2

∂u/∂x

101 102 103

n

√
∆x

∆x1

∆x2

∂u/∂y

(a) L2(Ω) Error

101 102 103

n

10−5

10−4

10−3

10−2

10−1

100

M
ax

im
um

er
ro

r
in

Ω ∆x0

∆x1

∆x2

∂u/∂x

101 102 103

n

∆x0

∆x1

∆x2

∂u/∂y

(b) L∞(Ω) Error

Figure 5: L2(Ω) and L∞(Ω) errors for the derivatives of the velocity fields that solve Equation (40), as computed by the
IB√·(♦), IB4(�), IBSE-1 (4), and IBSE-2 (#) methods.

Remark 5. In this section, we presented results for the Immersed Boundary method using both the
IB√· and IB4 functions to discretize the S and S∗ operators. For all results presented in this section,
we observe the same asymptotic behavior, although the IB4 method typically provides lower errors. For the
remainder of this paper, we will present results for the Immersed Boundary method using only the more
commonly used IB√· function.

5. Stokes flow around a cylinder

In this section we focus on the zero Reynolds number flow around a cylinder in a confined channel. The
exact problem we will simulate is on the domain [−20, 20] × [−2, 2], with a cylinder with radius R = 1
centered at (0, 0), and a mean stream-wise flow velocity of u = 1 enforced at the inflow boundary (where
x = −20). No-slip (u = 0) boundary conditions are imposed on the channel and cylinder walls. We choose
this setup as this domain has been extensively studied in the context of polymeric flow problems [37–39],
and accurate benchmarks are available.

We solve this problem using two separate underlying discretizations. In Section 5.1, we describe a Fourier
spectral discretization. The Fourier discretization allows the method to achieve third-order accuracy for the
velocity field u when C2 extensions are used, but when using this discretization, the enforcement of the
no-slip u = 0 boundary condition along the long channel walls requires the use of the IBSE methodology.
This leads to a large number of boundary points nbdy and a very large Schur-complement operator that
must be formed and inverted.

To help alleviate this problem, in Section 5.2 we couple the IBSE method to a standard second-order
staggered-grid finite difference discretization of the Stokes equations. The no-slip condition on the channel
walls is enforced naturally by the discretization, and the IBSE methodology is used only to enforce the
no-slip condition along the cylinder wall and to smoothly extend the unknown solution to the interior of
the cylinder. Despite the discretization being limited to second-order accuracy, we show that there is still a
benefit to using the IBSE-2 method over the IBSE-1 method, especially when local information regarding
the stress is required. If higher-order accuracy is desired, a more accurate finite-difference discretization
could be employed.

In Section 5.3, we compare the accuracy of these two different discretizations, for the IB√·, IBSE-
1, and IBSE-2 methods, and finally in Section 5.4, we compare the numerical efficiency of the different
discretizations.

16



5.1. Fourier spectral discretization
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Figure 6: The streamwise velocity u and solution domain for the Fourier spectral discretization to the Stokes channel flow
around a cylinder problem defined in Section 5.1. The extension domain E is denoted with crosshatches. The solution that is
shown was produced using the IBSE-2 method with ny = 512. Note that space is rescaled and ζ is chosen so that this domain
is equivalent to the [−20, 20]× [−2, 2] domain used in other studies.

For this problem we take the computational domain to be C = [−6π, 6π] × [−π, π], with channel walls
located at y = ±2ζ, where ζ = 12π/40; and the cylinder of radius R = ζ is centered at (0, 0). This domain,
together with the streamwise velocity u produced using the IBSE-2 method with ny = 512, is shown in
Figure 6. The domain is discretized with a uniform Cartesian mesh, with ny points in the spanwise direction
and nx = 6ny points in the streamwise direction, with ∆x = 2π/ny. The discrete meshpoints xij are located
at xij = (−6π + i∆x,−π + j∆x) for 0 ≤ i < nx and 0 ≤ j < ny. All differential operators are discretized
in the usual way, and the spread and interpolation operators are discretized as described in Section 3.1.
Because the extension region E (denoted by crosshatches in Figure 6) is not localized to a small region of
C, we choose the domain on which the extension equations are solved to coincide with C, i.e. CE = C. In
order to simulate a (rescaled) Poiseuille inflow condition, we solve the problem:

−∆u +∇p = βx̂ in Ω, (43a)

∇ · u = 0 in Ω, (43b)

u = 0 on Γ, (43c)

1

4ζ

ˆ 2ζ

−2ζ

u(−6π, y) dy = ζ, (43d)

where Γ denotes the internal boundaries (the surfaces of the cylinder and channel walls). The magnitude
of the constant forcing β is treated as a Lagrange multiplier, and is used to enforce the constraint that the
spanwise average of the streamwise velocity (u) at the far left end of the domain is ζ. The integral across the
channel in Equation (43d) is discretized using Simpson’s rule. In [37–39], the boundary condition specified at
the inflow is that u(−20, y) = 3(4− y)2/8. Our computational setup approximates this boundary condition
but does not impose it exactly. Given the length of the channel compared to R, we expect our solutions to
match closely with other studies; results are shown in Section 5.3.

5.2. Second-order finite difference discretization

In this section we describe how to couple the IBSE method to a standard finite difference scheme. The
Stokes Equations (16) are discretized using a second-order finite difference staggered grid discretization
where the velocity unknowns (u, v) are stored on the vertical and horizontal cell edges, respectively, and the
pressure unknowns p are stored at the cell centers [40, 41]. For this discretization, the computational domain
is taken to be C = [−20, 20] × [−4, 4]. There is no need to provide an extension region along the channel
walls, as in the domain for the Fourier spectral discretization shown in Figure 6. No-slip conditions (u = 0)
are applied on the top and bottom walls at y = −2 and y = 2; an inflow condition of u = (3(4 − y2)/8, 0)
is applied at x = −20; and an approximate outflow condition of ∂u/∂x is applied at x = 20. Note that for
this discretization, the flow is driven by the boundary condition, and no additional forcing has to be added
to the momentum equation as in Equation (43). Inversion of the discrete Stokes system (Equation (36))
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Figure 7: The solution u to the confined channel flow around a cylinder, produced using a second-order finite difference
discretization to the Stokes equations as the underlying PDE solver for the IBSE-2 method with ny = 512, as described in
Section 5.2. The extension region E is denoted by crosshatches. The extension functions ξu and ξp are not solved for on the
entirety of the computational domain, but rather in the much smaller region CE = [−2, 2]× [−2, 2], localized around E, that
is shaded in light gray.

is accomplished using a preconditioned GMRES method with a projection preconditioner [42]. With the
operator L = θI− ν∆u, this preconditioner is given by

P−1 =

(
I ∇∆−1

p

0 −θ∆−1
p + 2νI

)(
I 0
−∇· I

)(
L−1 0

0 I

)
. (44)

The discrete operators L and ∆p are inverted exactly using a combination of fast sine/cosine transforms
in one direction and tri-diagonal matrix inverses in the other direction. In our numerical tests this pre-
conditioner provides convergence to a relative residual of 10−10, independent of the grid spacing ∆x, in
approximately 30-40 iterations for the Stokes problem studied in this section, and approximately 3-4 itera-
tions for the Navier-Stokes problems studied in Section 6.1 and Section 6.2.

In principle, coupling the IBSE method to this discretization is simple. Examining the outline given in
Section 3.4, the only details that are not fully specified are the choice of CE (the computational domain
for the extension equations), and the rules for transferring ξu and ξp from the grid or grids on which the
extensions ξu and ξp are solved on to the staggered grids for (u, p).

In Figure 7, we show the domain C for this problem, together with the solution computed by the IBSE-2
method with ny = 512. Notice that the extension region E, denoted by crosshatches, is isolated to a small
region of C. Solving the extension equations for ξu and ξp on all of C would be computationally wasteful.
Instead, CE is chosen for this problem to be [−2, 2] × [−2, 2], which is highlighted in gray in Figure 7. In
principle, the only requirement for CE is that it contain E; in practice, it should be chosen large enough so
that the periodic boundary conditions used when solving the extension equation on CE do not induce any
undesirably large gradients. The operators Hk and Hk−1 are discretized and inverted using Fourier spectral
methods.

Because the staggered discretization we use does not collocate the unknowns for the velocity fields u and
v and the pressure field p, some choice must be made as to where the unknowns for the extension functions
ξu, ξv, and ξp should be located. We have explored two options:

1. A single extension ‘grid’ CE , where ξu, ξv, and ξp are collocated. Bilinear interpolation is used to
transfer information between this grid and the staggered grids for u, v, and p.

2. Three extension grids CE
u, CE

v, and CE
p, on which the nodes for ξu, ξv, and ξp are each collocated

with the nodes for u, v, and p, respectively. No interpolation is necessary when transferring information
between grids. The extension grid CE

u = [0, 2]× [∆x/2, 2+∆x/2] is shifted from [0, 2]× [0, 2] by ∆x/2
in the y direction so that the locations of the unknowns coincide with the locations of the unknowns
for the u grid; the extension grid CE

v is shifted by ∆x/2 in the x direction, and the extension grid
CE

p is shifted by ∆x/2 in both the x and y directions.

In our numerical experiments, the second option produced Schur-complement operators with slightly
lower numerical condition numbers and improved stability when solving time-dependent equations. Although
this choice requires slightly greater computational complexity, we use this option for this problem as well as
the Navier-Stokes problems defined in Section 6.
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Figure 8: Refinement study showing the convergence of differences between successively refined solutions, in L∞(Ω), for the
solutions u and p to the Stokes confined channel flow around a cylinder problem, computed by the IB√·(♦), IBSE-1 (4), and

IBSE-2 (#) methods.. Figure 8a shows solutions produced using a Fourier spectral discretization, Figure 8b shows solutions
produced using the finite difference discretization. The value of ny for the finite difference method has been scaled by a factor
of 2π/4, so that the x-axes represent the same effective resolution.

5.3. Results: Stokes flow around a cylinder

We now compare the results from the Fourier discretization defined in Section 5.1 and the finite difference
discretization defined in Section 5.2, across the IB√·, IBSE-1, and IBSE-2 methods. A convergence study
showing the difference between successively refined solutions for u and p in L∞(Ω) is shown in Figure 8. The
same trends in convergence as observed in Figure 4b are observed for the Fourier spectral discretization.
For the finite difference discretization, the L∞(Ω) convergence is limited by the accuracy of the underlying
discretization to second-order. Note, however, that the IBSE-1 and IBSE-2 methods still differ in the
convergence of the pressure function p: pointwise convergence of the pressure function is first-order for the
IBSE-1 method and second-order for the IBSE-2 method. The convergence rates for all elements of the
stress tensor are the same as for the pressure.

The drag coefficient is a simple, commonly used benchmark for comparing solutions across methods, and
is computed as

CD =
2FD

UD
, (45)

where U is the average velocity of the fluid across the inflow boundary, D is the diameter of the cylinder,
and FD is the drag force:

FD =

ˆ
Γ

σ · n · x̂ ds. (46)

For IBSE-1 and IBSE-2, the elements of the stress tensor are captured accurately up to the boundary.
To compute σ, we simply compute the appropriate derivatives of u (spectrally or with second-order finite
differences ignoring the boundary Γ), and interpolate to the boundary by applying the operator S∗. For the
spectral method, βx must be added to the pressure, as the constant body forcing βx̂ that is applied to drive
the flow acts as an effective pressure gradient. For the IB method, u is only continuous, and differentiation
produces large errors at the interface. The drag force can, however, be found by integrating the singular
forces supported along the boundary [10]:

FD =

ˆ
Γ

G(s) · x̂ ds, (47)
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Method
Spectral Finite Difference

ny CD % Error Improvement ny CD % Error Improvement
IB√·

64
181.956 37.47 -

32
159.357 20.40 -

IBSE-1 129.564 2.11 18 124.161 6.19 3
IBSE-2 132.781 0.32 117 129.270 2.33 8

IB√·
256

141.505 6.91 -
128

137.860 4.16 -
IBSE-1 132.437 0.058 119 131.228 0.86 5
IBSE-2 132.361 ≤ 0.004 ≥ 1700 132.202 0.12 35

IB√·
1024

134.495 1.61 -
512

133.657 0.98 -
IBSE-1 132.425 0.049 33 132.142 0.16 6
IBSE-2 132.360 ≤ 0.004 ≥ 400 132.348 0.0091 108

Table 1: The drag coefficient CD and % error, computed with respect to the reference value of 132.60 from [43]. Results are
provided for the IB√·, IBSE-1, and IBSE-2 methods, for both the spectral and finite difference discretizations, and for a coarse,
medium, and fine discretization. For the IBSE-1 and IBSE-2 methods, the improvement in the percent error, as compared to
the percent error produced by the IB√· method, is shown in the column labeled ‘Improvement’. When ny = 64 for the spectral

discretization, ∆x = 2π/64 ≈ 0.098; when ny = 32 for the finite difference discretization ∆x = 4/32 = 0.125.

where G are the singular forces from Equation (17).
In Figure 9, we show a refinement study for the drag coefficient, as compared to the reference value of

132.36, from [43]7. The IB method achieves first-order convergence of the drag coefficient in both methods;
the IBSE-1 and IBSE-2 methods achieve first- and second-order convergence with the finite difference dis-
cretization and convergence that is at least first- and second-order with the Fourier spectral method. It is
surprising that the drag coefficient for the IB method converges at all: none of the elements of the stress
tensor converge pointwise up to the boundary. Nevertheless, the singular forces accurately represent the
stress the fluid is exerting on the solid. Individual elements of the stress tensor, however, do not converge
near to the boundary. For the IBSE-k method, the velocity field is Ck(C), while the elements of the stress
tensor are Ck−1(C). For functions with Ck−1(C) regularity, the operator S∗ is accurate to O(∆xk).

In Table 1, we show the drag coefficient and the percent error computed by the Immersed Boundary,
IBSE-1, and IBSE-2 methods for both the spectral and finite difference discretizations over a range of
values of ny. The percent error is computed relative to the value of 132.36 from [43]. For the IBSE-1 and
IBSE-2 methods, we also show the improvement in % error as compared to the IB√· method. The IBSE
method provides the greatest advantage when tight error tolerances are required. Using the finite difference
discretization, to achieve a 1% error, the IB√· method would need to use ny ≈ 512, while the IBSE-2 method
requires only ny ≈ 64; however to achieve an error of 0.01%, the IB√· method requires ny ≈ 65536, while
IBSE-2 requires only ny ≈ 512.

5.4. A comparison of the numerical requirements

In Section 5.1, we discretized and solved a flow-around a cylinder problem in a confined channel using
a Fourier spectral method to discretize the underlying differential operators. This provides a convenient
and simple way to discretize the Stokes equations to high-order, but it comes with a significant drawback:
the Dirichlet u = 0 boundary condition along the geometrically simple channel walls must be enforced by
adding a force distribution to the non-physical region where y < −2ζ or y > 2ζ. This causes two significant
inefficiencies:

1. Spatial degrees of freedom (for u, p, ξu, ξp) must be solved for in the extension regions where y < −2ζ
or y > 2ζ.

7This geometry is typically used to study polymeric fluids. The most accurate results currently available are from a recent
high-order hp spectral element method [39], but a result for the Newtonian case is not provided in that study. The value that
we use for the Newtonian case comes from an older hp finite element method [43]. At low elasticity where both [43] and [39]
report results, the drag coefficients reported agree to at least two decimal places.
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Figure 9: Refinement study showing the convergence of the drag coefficient to the value 132.36 from [43], produced by the
IB√·(♦), IBSE-1 (4), and IBSE-2 (#) methods. The error is normalized by the reference value. The value of ny for the finite

difference method has been scaled by a factor of 2π/4, so that the x-axes represent the same effective resolution.

2. Additional boundary nodes must be placed along the interior boundaries at y = 2ζ and y = −2ζ
(corresponding to the channel walls).

The additional boundary nodes along the channel walls can become a significant problem for fine discretiza-
tions. Boundary nodes are placed a distance ∆s apart, where ∆s is set to be approximately twice the grid
spacing: ∆s ≈ 2∆x. For this geometry, when ny boundary points are used to discretize the spatial grid in
the y direction, 3ny boundary nodes are required for each of the channel walls.

In Table 2, we summarize the number of boundary nodes required for the computation, the size of
the Schur-Complement that must be inverted for IBSE-1 and IBSE-2, and the time required to form the
Schur complement as well as to compute the solution to one Stokes problem once the Schur complement
has been formed. For the steady Stokes problem, the time to the form the Schur complement dominates
the computation, the cost of a single Stokes solve is much smaller. For time dependent problems, the
Schur-complement need only be formed once, facilitating efficient time-stepping.

For the finest discretization that we run for the spectral discretization (ny = 1024), the IBSE-2 method
requires a Schur-complement that is 53011×53011; the finite-difference scheme at this discretization requires
a Schur-complement that is only 3856 × 3856. This can be a substantial issue. The matrix for the Fourier
discretization requires approximately 2.9 billion elements to be stored; using double precision, this requires
over 22 gigabytes of RAM. Although this is feasible in two dimensions, the discretization of long channel
walls would be computationally prohibitive in three dimensions. For the finite difference discretization of
the same size, only about 120 megabytes of memory are required.

Despite the disparity in memory requirements, solving the Stokes equations using a Fourier spectral
discretization is very efficient, and the cost of each full solve is between 10 and 20 times faster using the
spectral discretization. The time required to form the Schur complement is approximately equivalent: the
much larger Schur-complement size is offset by the speed of the solve itself. This disparity is largest for
the Stokes problem. For Navier-Stokes problems with moderate Reynolds numbers, the finite-difference
solves are approximately 10 times faster due to the fact that fewer iterations of the preconditioned GMRES
algorithm are required to reach the same tolerance. In this case the spectral solve is only moderately faster
per timestep, and the finite-difference discretization enjoys a significant advantage in the time required to
form the Schur-complement.
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ny nwall ncylinder nbdy
SC size Solve Time Formation Time

Spectral FD Spectral FD Spectral FD
16 48 7 103 827 56 53 272 40000 15000
32 96 15 207 1659 120 58 568 100000 70000
64 192 30 414 3315 240 66 465 220000 110000
128 384 60 828 6627 480 56 630 370000 300000
256 768 120 1656 13251 960 43 640 570000 610000
512 1536 241 3313 26507 1928 38 722 1000000 1400000
1024 3072 482 6626 53011 3856 40 812 2100000 3100000

(In units of time to compute an FFT)

Table 2: A summary of the number of boundary nodes required to discretize the flow around the cylinder problem studied in
Section 5, along with the associated size of the Schur-complement matrix defined in Equation (34) for both the Fourier spectral
and finite-difference discretizations. The time required to solve one problem, as well as to form the entire Schur complement,
normalized by the time required to execute one (real) FFT are also shown. The columns, from left to right, give ny , the
number of points used to discretize the computational domain C in the spanwise direction; nwall, the number of boundary
nodes used to discretize each wall; ncylinder, the number of boundary nodes used to discretize the cylinder; nbdy, the number
of boundary nodes used to discretize all of the boundaries (for the spectral discretization), the size of the Schur complement
(for both the spectral and finite-difference discretizations), and the (estimated) time to form the Schur-complement operator,
again normalized by the time to execute one real FFT.

6. Navier-Stokes equations

Because the IBSE method enables the efficient solution of the Stokes problem in the domain Ω, unsplit
time-stepping for the Navier-Stokes problem is simple when the non-linear terms are treated explicitly
in time. We integrate the Navier-Stokes equation in time using a fourth-order implicit-explicit (IMEX)
Backward Differentiation formula [44]:

25

12
un+1 − 4un + 3un−1 − 4

3
un−2 +

1

4
un−3 =

∆t
[
I(un+1) + 4E(un)− 6E(un−1) + 4E(un−2)− E(un−3)

]
, (48)

where I evaluates the stiff terms in ut while E evaluates the non-stiff terms in ut. For this problem, I(u)
is the Stokes operator and E(u) = −u · ∇u, discretized using second-order centered differences. The use
of this type of timestepping eliminates errors due to a projection step and removes the need for artificial
pressure boundary condtions, and is appropriate for low-Reynolds number problems and for problems where
accuracy near to the boundary is critical.

To test the performance of the IBSE method on a time dependent problem, we set up and solve a flow
around a cylinder problem in a standard benchmark flow geometry [45], shown in Figure 10. A variety of
simple scalar benchmarks for this problem are available and are reported as ranges which ensure a percent
error of at most 0.15% to 3%, depending on the benchmark [45]. To demonstrate the validity of the
timestepping scheme, we first demonstrate the solver for a problem with an unsteady solution, at Reynolds
number 100, and show quantitative agreement with time-dependent benchmarks. Unfortunately, very high-
accuracy benchmarks are unavailable for this problem. To provide a better measure of the accuracy of the
IBSE method, we solve a steady problem, with Reynolds number 20. For some subset of the benchmarks
that we examine for this problem, results accurate to nearly machine precision are available from high-order
spectral computations [46].

For both the unsteady and steady cases, the test problem is the confined flow around a cylindrical
obstacle. The computational domain C is [0, 2.05]× [0, 0.41], the extension region E = B0.05(0.2, 0.2) is the
cylinder of radius 0.05 centered at (0.2, 0.2), and the physical domain Ω = C \E. We will denote the internal
boundary ∂B0.05(0.2, 0.2) by Γ, while the boundary of the computational domain C will be denoted by ∂C.
∂C is divided into four parts: ∂C = ∪{∂Cl, ∂Cr, ∂Cb, ∂Ct}, denoting the boundaries at x = 0, x = 2.05,
y = 0, and y = 0.41, respectively. No-slip boundary conditions are applied on ∂Cb and ∂Ct, homogeneous
Neumann boundary conditions are applied on ∂Cr, and the inflow condition u = (4sUmy(0.41−y)/0.412, 0)
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Figure 10: The solution u to the problem solved in Section 6.1, at t = 12.0, produced using a second-order finite difference
discretization to the Navier-Stokes equations as the underlying PDE solver for the IBSE-2 method with ny = 512. The
extension region E is shown in white with hatching. The extension functions ξu and ξp are not solved for on the entirety of
the computational domain, but rather in the much smaller region CE = [0.41, 0.41] × [0.41, 0.41], localized around E, that is
shaded in light gray.

is applied on ∂Cl, where Um is the maximum value of the u velocity at inflow and will be chosen to set the
Reynolds number. To be precise, we solve

ut + u · ∇u− ν∆u +∇p = 0 in Ω, (49a)

∇ · u = 0 in Ω, (49b)

u = 0 on Γ, ∂Cb, and ∂Ct, (49c)

u(y) = 4Umy(0.41− y)/0.412 on ∂Cl, (49d)

v(y) = 0 on ∂Cl, (49e)

∂u/∂n = 0 on ∂Cr. (49f)

For the IBSE method, CE , the computational domain for computing the extension functions ξu and ξp
is chosen to be [0, 0.41] × [0, 0.41]. This geometry, along with the u value of the solution for the unsteady
Reynolds number 100 case, produced by the IBSE-2 method with ny = 512, is shown in Figure 10. We note
that our geometry is slightly different than the benchmark geometry used in [45]. Their domain is taken to
be a rectangle with width 2.2 and height 0.41, our rectangle is slightly less wide so that the rectangle has
an aspect ratio of 5, allowing the grid spacing in the x direction and y direction to be equal.

In practice, timestepping involves the explicit computation of a forcing function:

25

12
fu = 4un − 3un−1 +

4

3
un−2 − 1

4
un−3 + ∆t

[
4E(un)− 6E(un−1) + 4E(un−2)− E(un−3)

]
, (50)

followed by solution of the equation(
I− 12

25
ν∆t∆

)
un+1 +∇pn+1 = fu in Ω, (51a)

∇ · u = 0 in Ω, (51b)

un+1 = 0 on Γ, ∂Cb, and ∂Ct, (51c)

un+1(y) = 4Umy(0.41− y)/0.412 on ∂Cl, (51d)

vn+1(y) = 0 on ∂Cl, (51e)

∂un+1/∂n = 0 on ∂Cr. (51f)

6.1. Results: Unsteady flow (Reynolds number 100)

To achieve a Reynolds number of 100 for the unsteady case, Um is set to 1.5 in Equation (51d). For this
problem the Reynolds number is defined as Re = UD/ν, where U gives the average velocity across the inflow
boundary. For the prescribed boundary condition, U = 2

3Um. We integrate Equation (49) to t = 12.0 with
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CD CL Strouhal Number ∆P
Reference Range [3.22, 3.24] [0.99, 1.01] [0.295, 0.305] [2.46, 2.50]
IBSE-2, ny = 128 3.3123 0.9802 0.3005 2.4770
IBSE-2, ny = 512 3.2338 0.9866 0.3018 2.4979

Table 3: The drag coefficient (CD), lift coefficient (CL), Strouhal number, and pressure difference computed by the IBSE-2
method for the unsteady Navier Stokes problem with Reynolds number 100. The results are shown for ny = 128 and ny = 512,
and compared to the reference ranges provided in [45].

a timestep of ∆t = ∆x/5, for n = 27 and n = 29, using the IBSE-2 method when solving Equation (51).
The timestep ∆t need not be taken so small at this Reynolds number, but is chosen conservatively to ensure
that error is spatially dominated. The u velocity at t = 12.0 is shown in Figure 10.

The benchmarks measured in [45] for this problem include the maximum drag coefficient (CD), the
maximum lift coefficient (CL), the Strouhal number St, and the pressure difference (∆P ), measured at
t = t0 + 1/(2f), where f is the frequency of separation and t0 is the time at which the lift coefficient is
maximized. The benchmark ranges, along with the values computed using the IBSE-2 method with ny = 128
and ny = 512 are shown in Table 3. For the IBSE-2 method with n = 512, the computed values of the
benchmarks are consistent with the benchmark range, although the maximum value for the lift coefficient
is slightly low. We note that method 9a from [45], whose values agree very well with our results and the
high-order results from [46] for the steady Re = 20 case (see Section 6.2) also reports a lower maximum
value of CL = 0.9862 that is in strong agreement with the IBSE-2, ny = 512 result for CL = 0.9866.

6.2. Results: Steady flow (Reynolds number 20)

For a steady case, Um is set to 0.3 [45], and ν is set to 0.001, yielding a Reynolds numberRe = UD/ν = 20.
We integrate Equation (49) to t = 12.0 with a timestep of ∆t = ∆x/5, for n = 25 to n = 29, using the
IB method as well as IBSE-1 and IBSE-2 when solving Equation (51). As with the unsteady case, the
timestep need not be taken so small but is chosen conservatively to ensure that error is spatially dominated.
Convergence is assessed by comparing the ratio of the L∞(Ω) difference between solutions at successive
levels of refinement (bilinear interpolation is used to transfer data between grids to do the refinement study).
Results are shown in Figure 12. As expected, the IB method achieves first order convergence in L∞(Ω) for
the velocity, but fails to converge pointwise for the pressure. Both the IBSE-1 and IBSE-2 methods converge
at second-order for the velocity field. Although the IBSE-2 method produces C2(C) solutions, third order
convergence is not possible, as the underlying finite-difference discretization is only accurate to second order.
Despite asymptotically similar convergence, the actual error is lower for all discretizations. For the pressure,
IBSE-1 converges at first order and IBSE-2 converges at second order.

To emphasize the improved convergence of the IBSE method for elements of the stress tensor, we examine
the convergence of the pressure field p, interpolated to the boundary, in Figure 12b. Convergence is assessed

0.0 0.5 1.0 1.5 2.0
0
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0.30

Figure 11: The solution u to the problem solved in Section 6.2, at steady state, produced using a second-order finite difference
discretization to the Navier-Stokes equations as the underlying PDE solver for the IBSE-2 method with ny = 512. The
extension region E is denoted with crosshatches. The extension functions ξu and ξp are not solved for on the entirety of the
computational domain, but rather in the much smaller region CE = [0.41, 0.41]× [0.41, 0.41], localized around E, that is shaded
in light gray.
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Figure 12: Refinement study showing the convergence of differences between successively refined solutions for u and p in L∞(Ω)
(Figure 12a), and for S∗p in L∞(Γ) (Figure 12b), to the steady Navier-Stokes problem defined in Equation (49) at steady
state (t = 12.0), produced using the IB√·(♦), IBSE-1 (4), and IBSE-2 (#) methods. Figure 12c shows the pressure function
interpolated to the boundary, although this converges to something, as shown in Figure 12b, it is not converging to the correct
value. Note that the lines for IBSE-1 and IBSE-2 visually coincide.

by comparing the ratio of the L∞(Γ) difference between S∗p at different resolutions. From examining
Figure 12b, it appears that the IB method converges, albeit slowly. However, looking at Figure 12c, we see
that although the IB method is converging to something on the boundary, that value is not consistent with
the value determined by the IBSE method. For the IBSE-1 and IBSE-2 methods, S∗p converges at first-
and second-order, respectively. We note that the benchmark pressure difference, ∆P , for the IBSE-1 and
IBSE-2 methods is consistent with the ranges reported in [45] (see Table 4), giving us good reason to believe
that the pressure values (up to a constant) on the cylinder shown in Figure 12c are accurate.

For this problem the availability of high-accuracy values [46] for the drag coefficient (CD), the lift
coefficient (CL) and the pressure difference (∆P ) allows for precise benchmarking. We will also compute
the length of the recirculation zone (La), for which only a benchmark range [45] is available. For the IBSE
method, the drag and lift coefficients are computed by directly computing the stress, interpolating to the
boundary, and computing the appropriate integral over Γ. For the IB method, this provides an inconsistent
estimate, the appropriate integral over the singular forces is computed instead [10]. No pressure difference
(∆P ) is reported for the IB method, as a consistent estimate of the pressure on the boundary cannot be
obtained. This comparison is shown in Table 4. The IB method does surprisingly well for all benchmarks:
despite the fact that components of the stress tensor cannot be directly evaluated on the boundary, the
singular forces G provide an alternative measure that is convergent. For CD, CL, and ∆P , we expect the
IBSE-1 method to provide first-order estimates due to the fact that the stress σ is only continuous across the
boundary Γ. The estimates for the benchmarks have approximately the same accuracy as the IB estimates.
For the IBSE-2 method, the stress is differentiable across the boundary, and we expect these benchmarks to
be second-order accurate. Unsurprisingly this method provides much more accurate values. For n = 512, the
IBSE-2 method yields a % error in the drag coefficient that is nearly two orders of magnitude smaller than
the % error provided by the IB method. We again emphasize that with the IB method, consistent estimates
of p cannot be obtained at the boundary, and so we do not attempt to calculate a pressure difference ∆P
for these methods.

7. Discussion

In [27], we introduced the IBSE method for solving elliptic and parabolic PDE on general smooth domains
to an arbitrarily high order of accuracy using simple Fourier spectral methods. In this paper, we extend the
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Benchmark CD CL La ∆P
Range [5.57, 5.59] [0.0104, 0.0110] [0.0842, 0.0852] [0.1172, 0.1176]
Value 5.57953523384 0.010618948146 - 0.11752016697

value %err value %err value value %err

n = 128
IB√· 5.76813 3.38003 0.01306 22.9463 0.08803 - -

IBSE-1 5.52533 0.97142 0.00405 61.8221 0.08514 0.11625 1.08426
IBSE-2 5.58697 0.13323 0.00875 17.5530 0.08481 0.11714 0.32420

n = 512
IB√· 5.62468 0.80919 0.01081 1.81973 0.08567 - -

IBSE-1 5.55464 0.44618 0.01228 15.6430 0.08465 0.11677 0.63829
IBSE-2 5.57883 0.01271 0.01069 0.71540 0.08464 0.11759 0.06075

Table 4: The drag coefficient (CD), lift coefficient (CL), length of the recirculation zone (La), and the pressure difference
(∆P ), computed by the IB√·, IBSE-1, and IBSE-2 methods, compared to the benchmark ranges computed in [45] (labeled as

“Benchmark Range”), as well as the results from the high-order spectral computations in [46] (labeled as “Benchmark Value”).
The percent errors reported are computed in reference to the benchmark value.

methodology to fluid problems with divergence constraints, including the incompressible Stokes and Navier
Stokes equations. We decouple the extension procedure from the underlying PDE solver, and demonstrate
accurate solutions with an underlying Fourier spectral solver as well as a second-order finite difference
method. For the velocity field, we demonstrate up to third-order pointwise convergence, in contrast to the
first-order pointwise convergence of the IB method. In addition, we show up to second-order pointwise
convergence of the pressure function and all elements of the fluid stress tensor. In the IB method, these
quantities do not converge pointwise.

In the IBSE method, accuracy is obtained by forcing the solution to be globally smooth on the entire
computational domain. This is accomplished by solving for the smooth extension of the unknown solution,
allowing for application of the IBSE method to the steady Stokes equations. Remarkably, the fully coupled
problem for the solution to the incompressible Stokes equations (combined with the equations that define the
smooth extensions to the velocity and pressure fields) can be effectively reduced to a small, dense system
of equations, and the cost to invert this system can be minimized by precomputing and storing its LU-
factorization. The IBSE method thus provides an efficient algorithm for implicit or implicit-explicit (IMEX)
timestepping on stationary domains. The method requires minimal geometric information regarding the
boundary: only its position, normals, and an indicator variable denoting whether points in the computa-
tional grid are inside of the physical domain Ω or not, enabling simple and robust code. The method is
flexible enough to allow high-order discretization in space and time for a wide range of nonlinear PDE using
straightforward implicit-explicit timestepping schemes.

The IBSE method decouples the discretization of the extension problem from the discretization of the
underlying PDE. By itself, this allows some gains in efficiency when the extension region is small compared
to the physical domain Ω, as is often the case when studying the flow around objects. More importantly,
however, the methodology can be easily coupled to existing codes. This enables the simple and accurate
inclusion of embedded boundaries into ongoing research without significant redevelopment of code. Addi-
tionally, it allows for the ability to build on top of validated and optimized code for the solution of PDE,
including those that that use adaptive mesh refinement, without sacrificing accuracy near to the embedded
boundary.

The IBSE method shares some similarities with Fourier Continuation (FC) [23–25] and Active Penalty
(AP) [26] methods. The FC method uses Fourier methods to obtain a high-order discretization, and the
idea that smooth, non-periodic functions can be turned into smooth and periodic functions by extending
them into a larger domain in some appropriate way. There are two key differences between the FC method
and the IBSE method. The FC method (i) uses dimensional splitting to reduce the problem to a set
of one-dimensional problems and (ii) relies on data from the previous timestep in order to generate the
Fourier continuations that allow for their high-order spatial accuracy. This forces the FC method to use
an Alternating-Direction Implicit scheme to take large stable timesteps when solving parabolic equations,
complicating the implementation of high-order timestepping. In addition, the FC method requires the use
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of an iterative solver for computing solutions to the Poisson equation, complicating an efficient discretiza-
tion of the incompressible Navier-Stokes equations, although the FC method has been used to solve the
compressible Navier-Stokes equations to high order [23]. In contrast to the conditioning issues faced by the
IBSE method, the one-dimensional nature of the Fourier-continuation problem allows the FC method to
use high-precision arithmetic in certain precomputations to effectively eliminate the conditioning problem
inherent in constructing smooth extensions [47]. This enables the FC method to obtain stable methods that
converge to higher order than can be achieved by the IBSE method in double-precision arithmetic.

The AP method, like the FC method, relies on data from previous timesteps in the way that it imposes
smoothness on the solution of the PDE. A large drag force is applied that penalizes deviations of the solution
in the extension region from the smooth extension of the solution at the previous timestep. This dependence
on data from previous timesteps forces the AP method to use explicit timestepping when solving parabolic
equations. The AP algorithm for the Navier-Stokes equations uses a projection method, requires explicit
time-stepping, and is only able to achieve second- and first-order convergence for the velocity and pressure
fields, respectively.

In contrast, the IBSE method directly solves the steady Stokes problem, smoothly extending both the
unknown velocity and pressure fields. The extension equations are coupled directly to the unknown solutions
through the unsplit Stokes problem, eliminating the errors inherent in projection methods at low Reynolds
number. The price that we pay for extending the unknown solution is that the high-efficiency that we
obtain is only currently achievable on stationary domains. This is because the inversion method used
for the IBSE method relies on an expensive precomputation that depends on the physical domain and the
discretization. However, there is no fundamental obstacle to the application of the IBSE method to problems
with moving domains. Instead, the challenge is to find a robust and efficient method to invert the IBSE
system in Equation (25) that does not require substantial precomputation. Recent progress has been made
for preconditioning similar systems of equations for the simulation of rigid-body motion in an Immersed
Boundary framework [4]. The integration of these ideas into the IBSE method to allow for simulation of
moving boundary problems will be an area of active future research.

We have only implemented two-dimensional examples in this paper. The IBSE method extends to three
dimensions without any changes, although there is one minor difficulty that must be resolved: the production
of an accurate enough quadrature for the discretization of the boundary integrals in the spread operators
S and Tk. For two-dimensional problems, this comes nearly for free since the simple quadrature rule given
in Section 3.1 is spectrally accurate for closed one-dimensional curves. High-order quadrature rules for two-
dimensional surfaces are more complicated but well-developed, and high-order surface representation has
been incorporated into the Immersed Boundary method [48, 49].
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[41] S McKee, MF Tomé, VG Ferreira, JA Cuminato, A Castelo, FS Sousa, and N Mangiavacchi. The MAC method. Computers
& Fluids, 37(8):907–930, 2008.

[42] M. Cai, A. J. Nonaka, J. B. Bell, B. E. Griffith, and A. Donev. Efficient Variable-Coefficient Finite-Volume Stokes Solvers.
pages 1–25, 2013. URL http://arxiv.org/abs/1308.4605.

[43] Yurun Fan, RI Tanner, and N Phan-Thien. Galerkin/least-square finite-element methods for steady viscoelastic flows.
Journal of Non-Newtonian Fluid Mechanics, 84(2):233–256, 1999.

[44] Willem Hundsdorfer and Steven J. Ruuth. IMEX extensions of linear multistep methods with general monotonicity and
boundedness properties. Journal of Computational Physics, 225(2):2016–2042, 2007. ISSN 00219991. doi: 10.1016/j.jcp.
2007.03.003.
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