20 research outputs found

    Alu-Alu Recombination Underlying the First Large Genomic Deletion in GlcNAc-Phosphotransferase Alpha/Beta (GNPTAB) Gene in a MLII Alpha/Beta Patient

    Get PDF
    Mucolipidosis type II α/β is a severe, autosomal recessive lysosomal storage disorder, caused by a defect in the GNPTAB gene that codes for the α/β subunits of the GlcNAc-phosphotransferase. To date, over 100 different mutations have been identified in MLII α/β patients, but no large deletions have been reported. Here we present the first case of a large homozygous intragenic GNPTAB gene deletion (c.3435-386_3602 + 343del897) encompassing exon 19, identified in a ML II α/β patient. Long-range PCR and sequencing methodologies were used to refine the characterization of this rearrangement, leading to the identification of a 21 bp repetitive motif in introns 18 and 19. Further analysis revealed that both the 5' and 3' breakpoints were located within highly homologous Alu elements (Alu-Sz in intron 18 and Alu-Sq2, in intron 19), suggesting that this deletion has probably resulted from Alu-Alu unequal homologous recombination. RT-PCR methods were used to further evaluate the consequences of the alteration for the processing of the mutant pre mRNA GNPTAB, revealing the production of three abnormal transcripts: one without exon 19 (p.Lys1146_Trp1201del); another with an additional loss of exon 20 (p.Arg1145Serfs*2), and a third in which exon 19 was substituted by a pseudoexon inclusion consisting of a 62 bp fragment from intron 18 (p.Arg1145Serfs*16). Interestingly, this 62 bp fragment corresponds to the Alu-Sz element integrated in intron 18.This represents the first description of a large deletion identified in the GNPTAB gene and contributes to enrich the knowledge on the molecular mechanisms underlying causative mutations in ML II.This work was supported by FCT - project PIC/IC/83252/2007 (http://alfa.fct.mctes.pt/). Coutinho MF and Quental S received grants from the FCT (SFRH/BD/48103/2008; SFRH/BPD/64025/2009)

    Roles for retrotransposon insertions in human disease

    Get PDF

    Alu-Alu recombination underlying the first large genomic deletion in GlcNAc-phosphotransferase α/β (GNPTAB) gene in a MLII α/β patient

    Get PDF
    Mucolipidosis type II alpha/beta is a severe, autosomal recessive lysosomal storage disorder, caused by a defect in the GNPTAB gene that codes for the alpha/beta subunits of the GlcNAc-phosphotransferase. To date, over 100 different mutations have been identified in MLII alpha/beta patients but no large deletions have been reported. Here we present the first case of a large homozygous intragenic GNPTAB gene deletion (c.3435-386­_3602+343del897) encompassing exon 19, identified in a ML II alpha/beta patient. Long range PCR and sequencing methodologies were used to refine the characterization of this rearrangement, leading to the identification of a 21bp repetitive motif in introns 18 and 19. Further analysis revealed that both the 5’ and 3’ breakpoints were located within highly homologous Alu elements (Alu-Sz in intron 18 and Alu-Sq2, in intron 19), suggesting that this deletion has probably resulted from Alu-Alu unequal homologous recombination. RT-PCR methods were used to further evaluate the consequences of the alteration for the processing of the mutant pre mRNA GNPTAB, revealing the production of three abnormal transcripts: one without exon 19 (p.Lys1146_Trp1201del); another with an additional loss of exon 20 (p.Arg1145Serfs*2), and a third in which exon 19 was substituted by a pseudoexon inclusion consisting of a 62 bp fragment from intron 18 (p.Arg1145Serfs*16). Interestingly, this 62 bp fragment corresponds to the Alu-Sz element integrated in intron 18. This represents the first description of a large deletion identified in the GNPTAB gene and contributes to enrich the knowledge on the molecular mechanisms underlying causative mutations in ML II

    Alu-Alu recombination underlying the first large genomic deletion in GlcNAc-phosphotransferase α/β (GNPTAB) gene in a MLII α/β patient [Poster]

    Get PDF
    Mucolipidosis type II α/β is a severe, autosomal recessive lysosomal storage disorder, caused by a defect in the GNPTAB gene that codes for the α/β subunits of the GlcNAc-phosphotransferase. To date, over 100 different mutations have been identified in MLII α/β patients including missense, nonsense, small deletions, small insertions and splice site mutations (Human Gene Mutation Database website [http://www.hgmd.org] and references therein). Large genomic rearrangements were rarely reported (1,6%) with only two large insertions having been described up to now (Tappino et al., 2008; Otomo et al., 2009) but no known large deletions. Results: In this work, through long range PCR and sequencing methodologies we identified a large homozygous intragenic GNPTAB gene deletion, encompassing exon 19, in a ML II α/β patient and refined the characterization of this rearrangement. As a result, it was possible to identify the deletion breakpoints and determine the deletion extension which was 897 bp and included the last 386 nucleotides of intron 18, exon 19, and the first 343 bp of intron 19. A 21bp repetitive motif in introns 18 and 19 was observed at both deletion breakpoints. Further analysis revealed that both the 5’ and 3’ breakpoints were located within highly homologous Alu elements (Alu-Sz in intron 18 and Alu-Sq2, in intron 19), suggesting that this deletion has probably resulted from Alu-Alu unequal homologous recombination. RT-PCR methods were used to further evaluate the consequences of the alteration for the processing of the mutant pre mRNA GNPTAB, revealing the production of three abnormal transcripts: one without exon 19; another with an additional loss of exon 20, and a third in which exon 19 was substituted by a pseudoexon inclusion consisting of a 62 bp fragment from intron 18. Interestingly, this 62 bp fragment corresponds to the Alu-Sz element integrated in intron 18. Conclusion: To the best of our knowledge, this represents the first description of a large deletion identified in the GNPTAB gene. Furthermore, the work adds on the knowledge of the molecular mechanisms underlying causative mutations in ML II and highlights the importance of cDNA analysis on the prediction of the impact of large deletions at protein levels, since a simple gDNA analysis might be misleading

    Molecular analysis of NPC1 and NPC2 gene in 34 Niemann-Pick C Italian Patients: identification and structural modeling of novel mutations.

    No full text
    Niemann–Pick C, the autosomal recessive neuro-visceral disease resulting from a failure of cholesterol trafficking within the endosomal–lysosomal pathway, is due to mutations in NPC1 or NPC2 genes. We characterized 34 unrelated patients including 32 patients with mutations in NPC1 gene and two patients in NPC2 gene. Overall, 33 distinct genotypes were encountered. Among the 21 unpublished NPC1 alleles, 15 were due to point mutations resulting in 13 codon replacements (p.C100S, p.P237L, p.R389L, p.L472H, p.Y634C, p.S636F, p.V780G, p.Q921P, p.Y1019C, p.R1077Q, p.L1102F, p.A1187V, and p.L1191F) and in two premature stop codons (p.R934X and p.Q447X); a new mutant carried two in cis mutations, p.[L648H;M1142T] and four other NPC1 alleles were small deletions/insertions leading both to frame shifts and premature protein truncations (p.C31WfsX26, p.F284LfsX26, p.E1188fsX54, and p.T1205NfsX53). Finally, the new intronic c.464-2A>C change at the 3′ acceptor splice site of intron 4 affected NPC1 messenger RNA processing. We also found a new NPC2 mutant caused by a change of the first codon (p.M1L). The novel missense mutations were further investigated by two bioinformatics approaches. Panther proein classification system computationally predicted the detrimental effect of all new missense mutations occurring at evolutionary conserved positions. The other bioinformatics approach was based on prediction of structural alterations induced by missense mutations on the NPC1 atomic models. The in silico analysis predicted protein malfunctioning and/or local folding alteration for most missense mutations. Moreover, the effects of the missense mutations (p.Y634C, p.S636F, p.L648H, and p.V780G) affecting the sterol-sensing domain (SSD) were evaluated by docking simulation between the atomic coordinates of SSD model and cholesterol

    Molecular Characterization of 22 Novel UDP-N-acetylglucosamine-1-phosphate transferase á- and â-subunit (GNPTAB) Gene Mutations Causing Mucolipidosis Types IIá/â and IIIá/â in 46 Patients

    No full text
    Mutational analysis of the GNPTAB gene was performed in 46 apparently unrelated patients with mucolipidosis IIα/β or IIIα/β, characterized by the mistargeting of multiple lysosomal enzymes as a consequence of a UDP-GlcNAc-1-phosphotransferase defect. The GNPTAB mutational spectrum comprised 25 distinct mutant alleles, 22 of which were novel, including 3 nonsense mutations (p.Q314X, p.R375X, p.Q507X), 5 missense mutations (p.I403T, p.C442Y, p.C461G, p.Q926P, p.L1001P), 6 microduplications (c.749dupA, c.857dupA, c.1191_1194dupGCTG, c.1206dupT, c.1331dupG, c.2220_2221dupGA) and 8 microdeletions (c.755_759delCCTCT, c.1399delG, c.1959_1962delTAGT, c.1965delC, c.2550_2554delGAAAA, c.3443_3446delTTTG, c.3487_3490delACAG, c.3523_3529delATGTTCC). All micro-duplications/deletions were predicted to result in the premature termination of translation. A novel exonic SNP (c.303G>A; E101E) was identified which is predicted to create an SFRS1 (SF2/ASF) binding site that may be of potential functional/clinical relevance. This study of mutations in the GNPTAB gene, the largest yet reported, extends our knowledge of the mutational heterogeneity evident in MLIIα/β/MLIIIα/β

    Identification and molecular characterization of six novel mutations in the UDP-N-acetylglucosamine-1-phosphotransferase gamma subunit (GNPTG) gene in patients with mucolipidosis III gamma.

    No full text
    Mucolipidosis type III (MLIII) is an autosomal recessive disorder affecting lysosomal hydrolase trafficking. In a study of 10 patients from seven families with a clinical phenotype and enzymatic diagnosis of MLIII, six novel GNPTG gene mutations were identified. These included missense (p.T286M) and nonsense (p.W111X) mutations and a transition in the obligate AG-dinucleotide of the intron 8 acceptor splice site (c.610-2A>G). Three microdeletions were also identified, two of which (c.611delG and c.640_667del28) were located within the coding region whereas one (c.609+28_610-16del) was located entirely within intron 8. RT-PCR analysis of the c.610-2A>G transition demonstrated that the change altered splicing, leading to the production of two distinct aberrantly spliced forms, viz. the skipping of exon 9 (p.G204_K247del) or the retention of introns 8 and 9 (p.G204VfsX28). RT-PCR analysis, performed on a patient homozygous for the intronic deletion (c.609+28_610-16del), failed to detect any GNPTG RNA transcripts. To determine whether c.609+28_610-16del allele-derived transcripts were subject to nonsense-mediated mRNA decay (NMD), patient fibroblasts were incubated with the protein synthesis inhibitor anisomycin. An RT-PCR fragment retaining 43 bp of intron 8 was consistently detected suggesting that the 33-bp genomic deletion had elicited NMD. Quantitative real-time PCR and GNPTG western blot analysis confirmed that the homozygous microdeletion p.G204VfsX17 had elicited NMD resulting in failure to synthesize GNPTG protein. Analysis of the sequences surrounding the microdeletion breakpoints revealed either intrinsic repetitivity of the deleted region or short direct repeats adjacent to the breakpoint junctions. This is consistent with these repeats having mediated the microdeletions via replication slippage and supports the view that the mutational spectrum of the GNPTG gene is strongly influenced by the properties of the local DNA sequence environment

    Origin and spread of a common deletion causing mucolipidosis type II: insights from patterns of haplotypic diversity

    No full text
    Versão impressa: Clin Genet. 2011 Sep;80(3):273-280Mucolipidosis II (ML II alpha/beta), or I-cell disease, is a rare genetic disease in which activity of the uridine diphosphate (UDP)-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase) is absent. GlcNAc-phosphotransferase is a multimeric enzyme encoded by two genes, GNPTAB and GNPTG. A spectrum of mutations in GNPTAB has been recently reported to cause ML II alpha/beta. Most of these mutations were found to be private or rare. However, the mutation c.3503_3504delTC has been detected among Israeli and Palestinian Arab-Muslim, Turkish, Canadian, Italian, Portuguese, Irish traveller and US patients. We analysed 44 patients who were either homozygous or compound heterozygous for this deletion (22 Italians, 8 Arab-Muslims, 1 Turk, 3 Argentineans, 3 Brazilians, 2 Irish travellers and 5 Portuguese) and 16 carriers (15 Canadians and 1 Italian) for three intragenic polymorphisms: c.-41_-39delGGC, c.18G>A and c.1932A>G as well as two microsatellite markers flanking the GNPTAB gene (D12S1607 and D12S1727). We identified a common haplotype in all chromosomes bearing the c.3503_3504delTC mutation. In summary, we showed that patients carrying the c.3503_3504delTC deletion presented with a common haplotype, which implies a common origin of this mutation. Additionally, the level of diversity observed at the most distant locus indicates that the mutation is relatively ancient (around 2063 years old), and the geographical distribution further suggests that it probably arose in a peri-Mediterranean region

    N-acetylglucosamine-1-phosphate transferase, alpha/beta and gamma subunits; N-acetylglucosamine-1- (GNPTAB, GNPTG)

    No full text
    GlcNAc-1-phosphotransferase catalyzes the transfer of a GlcNAc-1-phosphate residue from UDP-GlcNAc to C6 positions of selected mannoses in highmannose- type oligosaccharides of the hydrolases (Goldberg and Kornfeld 1981; Natowicz et al. 1982; Varki and Kornfeld 1983). At a biological level this reaction is followed by the removal of the terminal GlcNAc by an N-acetylglucosamine-1-phosphodiester α-N-acetyl-glucosaminidase, usually referred to as “uncovering enzyme” (UCE; see Chap. 78; Article ID: 332135). Sequential action of these two enzymes results in the formation of the mannose-6-phosphate (Man-6-P) marker, a specific tag acquired by lysosomal hydrolases that ensures recognition by M6P receptors and delivery to the endosomal/lysosomal system (Braulke and Bonifacino 2009)
    corecore