1,370 research outputs found

    Lattice Study of Anisotropic QED-3

    Full text link
    We present results from a Monte Carlo simulation of non-compact lattice QED in 3 dimensions on a 16316^3 lattice in which an explicit anisotropy between xx and yy hopping terms has been introduced into the action. This formulation is inspired by recent formulations of anisotropic QED3_3 as an effective theory of the non-superconducting portion of the cuprate phase diagram, with relativistic fermion degrees of freedom defined near the nodes of the gap function on the Fermi surface, and massless photon degrees of freedom reproducing the dynamics of the phase disorder of the superconducting order parameter. Using a parameter set corresponding to broken chiral symmetry in the isotropic limit, our results show that the renormalised anisotropy, defined in terms of the ratio of correlation lengths of gauge invariant bound states in the xx and yy directions, exceeds the explicit anisotropy κ\kappa introduced in the lattice action, implying in contrast to recent analytic results that anisotropy is a relevant deformation of QED3_3. There also appears to be a chiral symmetry restoring phase transition at κc4.5\kappa_c\simeq4.5, implying that the pseudogap phase persists down to T=0 in the cuprate phase diagram.Comment: 24 pages, 9 figures, 3 tables. This (the published version) has the following alterations: i) An expanded discussion of the empirical aspects of HT superconductivity, ii) An updated version of Figure 4, iii) The removal of the consistency check in section 3.3.1 for reasons of brevit

    Absence of an isotope effect in the magnetic resonance in high-TcT_c superconductors

    Full text link
    An inelastic neutron scattering experiment has been performed in the high-temperature superconductor YBa2Cu3O6.89\rm YBa_2Cu_3O_{6.89} to search for an oxygen-isotope shift of the well-known magnetic resonance mode at 41 meV. Contrary to a recent prediction (I. Eremin, {\it et al.}, Phys. Rev. B {\bf 69}, 094517 (2004)), a negligible shift (at best \leq +0.2 meV) of the resonance energy is observed upon oxygen isotope substitution (16^{16}O18\to^{18}O). This suggests a negligible spin-phonon interaction in the high-TcT_c cuprates at optimal doping.Comment: 3 figure

    A Transport and Microwave Study of Superconducting and Magnetic RuSr2EuCu2O8

    Get PDF
    We have performed susceptibility, thermopower, dc resistance and microwave measurements on RuSr2EuCu2O8. This compound has recently been shown to display the coexistence of both superconducting and magnetic order. We find clear evidence of changes in the dc and microwave resistance near the magnetic ordering temperature (132 K). The intergranular effects were separated from the intragranular effects by performing microwave measurements on a sintered ceramic sample as well as on a powder sample dispersed in an epoxy resin. We show that the data can be interpreted in terms of the normal-state resistivity being dominated by the CuO2 layers with exchange coupling to the Ru moments in the RuO2 layers. Furthermore, most of the normal-state semiconductor-like upturn in the microwave resistance is found to arise from intergranular transport. The data in the superconducting state can be consistently interpreted in terms of intergranular weak-links and an intragranular spontaneous vortex phase due to the ferromagnetic component of the magnetization arising from the RuO2 planes.Comment: 20 pages including 6 figures in pdf format. To be published in Phys. Rev.

    Resonant Impurity States in the D-Density-Wave Phase

    Full text link
    We study the electronic structure near impurities in the d-density-wave (DDW) state, a possible candidate phase for the pseudo-gap region of the high-temperature superconductors. We show that the local DOS near a non-magnetic impurity in the DDW state is {\it qualitatively} different from that in a superconductor with dx2y2d_{x^2-y^2}-symmetry. Since this result is a robust feature of the DDW phase, it can help to identify the nature of the two different phases recently observed by scanning tunneling microscopy experiments in the superconducting state of underdoped Bi-2212 compounds

    Ni impurity induced enhancement of the pseudogap in cuprate high T_c superconductors

    Full text link
    The influence of magnetic Ni and non-magnetic Zn impurities on the normal state pseudogap (PG) in the c-axis optical conductivity of NdBa2_{2}\{Cu1y% _{1-y}(Ni,Zn)y}3_{y}\}_{3}O7δ_{7-\delta} crystals was studied by spectral ellipsometry. We find that these impurities which strongly suppress superconductivity have a profoundly different impact on the PG. Zn gives rise to a gradual and inhomogeneous PG suppression while Ni strongly enhances the PG. Our results challenge theories that relate the PG either to precursor superconductivity or to other phases with exotic order parameters, such as flux phase or d-density wave states, that should be suppressed by potential scattering. The apparent difference between magnetic and non-magnetic impurities instead points towards an important role of magnetic correlations in the PG state.Comment: 11 pages and 2 figure
    corecore