1,567 research outputs found
Structure of 10N in 9C+p resonance scattering
The structure of exotic nucleus 10N was studied using 9C+p resonance
scattering. Two L=0 resonances were found to be the lowest states in 10N. The
ground state of 10N is unbound with respect to proton decay by 2.2(2) or 1.9(2)
MeV depending on the 2- or 1- spin-parity assignment, and the first excited
state is unbound by 2.8(2) MeV.Comment: 6 pages, 4 figures, 1 table, submitted to Phys. Lett.
Evolution of the energy spacing in odd-mass K, Cl and P isotopes for
The energy of the first excited state in the neutron-rich N=28 nucleus 45Cl
has been established via in-beam gamma-ray spectroscopy following proton
removal. This energy value completes the systematics of the
E(1/2^+_1)-E(3/2^+_1) level spacing in odd-mass K, Cl and P isotopes for
N=20-28. The results are discussed in the framework of shell-model calculations
in the sd-fp model space. The contribution of the central, spin-orbit and
tensor components is discussed from a calculation based on a proton single-hole
spectrum from G-matrix and pi + rho meson exchange potentials. A composite
model for the proton 0d_{3/2}-1s_{1/2} single-particle energy shift is
presented.Comment: Phys. Rev. C, in pres
Six Peaks Visible in the Redshift Distribution of 46,400 SDSS Quasars Agree with the Preferred Redshifts Predicted by the Decreasing Intrinsic Redshift Model
The redshift distribution of all 46,400 quasars in the Sloan Digital Sky
Survey (SDSS) Quasar Catalog III, Third Data Release, is examined. Six Peaks
that fall within the redshift window below z = 4, are visible. Their positions
agree with the preferred redshift values predicted by the decreasing intrinsic
redshift (DIR) model, even though this model was derived using completely
independent evidence. A power spectrum analysis of the full dataset confirms
the presence of a single, significant power peak at the expected redshift
period. Power peaks with the predicted period are also obtained when the upper
and lower halves of the redshift distribution are examined separately. The
periodicity detected is in linear z, as opposed to log(1+z). Because the peaks
in the SDSS quasar redshift distribution agree well with the preferred
redshifts predicted by the intrinsic redshift relation, we conclude that this
relation, and the peaks in the redshift distribution, likely both have the same
origin, and this may be intrinsic redshifts, or a common selection effect.
However, because of the way the intrinsic redshift relation was determined it
seems unlikely that one selection effect could have been responsible for both.Comment: 12 pages, 12 figure, accepted for publication in the Astrophysical
Journa
An empirically observed pitch-angle diffusion eigenmode in the Earth\u27s electron belt near L* = 5.0
Abstract Using data from NASA\u27s Van Allen Probes, we have identified a synchronized exponential decay of electron flux in the outer zone, near L* = 5.0. Exponential decays strongly indicate the presence of a pure eigenmode of a diffusion operator acting in the synchronized dimension(s). The decay has a time scale of about 4 days with no dependence on pitch angle. While flux at nearby energies and L* is also decaying exponentially, the decay time varies in those dimensions. This suggests the primary decay mechanism is elastic pitch angle scattering, which itself depends on energy and L *. We invert the shape of the observed eigenmode to obtain an approximate shape of the pitch angle diffusion coefficient and show excellent agreement with diffusion by plasmaspheric hiss. Our results suggest that empirically derived eigenmodes provide a powerful diagnostic of the dynamic processes behind exponential decays
Population of bound excited states in intermediate-energy fragmentation reactions
Fragmentation reactions with intermediate-energy heavy-ion beams exhibit a
wide range of reaction mechanisms, ranging from direct reactions to statistical
processes. We examine this transition by measuring the relative population of
excited states in several sd-shell nuclei produced by fragmentation with the
number of removed nucleons ranging from two to sixteen. The two-nucleon removal
is consistent with a non-dissipative process whereas the removal of more than
five nucleons appears to be mainly statistical.Comment: 5 pages, 6 figure
- …
