159 research outputs found
Mice with targeted disruption of the acyl-CoA binding protein display attenuated urine concentrating ability and diminished renal aquaporin-3 abundance
The acyl-CoA binding protein (ACBP) is a small intracellular protein that specifically binds and transports medium to long chain acyl-CoA esters. Previous studies have shown that ACBP is ubiquitously expressed but found at particularly high levels in lipogenic cell types as well as in many epithelial cells. Here we show that ACBP is widely expressed in human and mouse kidney epithelium with the highest expression in the proximal convoluted tubules. To elucidate the role of ACBP in the renal epithelium, mice with targeted disruption of the ACBP gene (ACBP(-/-)) were used to study water and NaCl balance as well as urine concentrating ability in metabolic cages. Food intake and urinary excretion of Na(+) and K(+) did not differ between ACBP(-/-) and (+/+) mice. Water intake and diuresis were significantly higher at baseline in ACBP(-/-) mice compared to that of (+/+) mice. Subsequent to 20h water deprivation, ACBP(-/-) mice exhibited increased diuresis, reduced urine osmolality, elevated hematocrit and higher relative weight loss compared to (+/+) mice. There were no significant differences in plasma concentrations of renin, corticosterone and aldosterone between mice of the two genotypes. At baseline, renal medullary interstitial fluid osmolality was not different between genotypes. After water deprivation, renal medullary interstitial fluid osmolality rose significantly while osmolality and concentrations of Na(+), K(+) and urea did not differ between ACBP(-/-) and (+/+). Cyclic AMP excretion was similar. Renal aquaporin (AQP)-2 and -4 protein abundances did not differ between water-deprived ACBP (+/+) and (-/-) mice. AQP3 abundance was lower in water-deprived ACBP(-/-) mice than in (+/+) control animals. Thus, we conclude that ACBP is necessary for intact urine concentrating ability. Our data suggest that the deficiency in urine concentrating ability in the ACBP(-/-) may be caused by reduced AQP3 leading to impaired efflux over the basolateral membrane of the collecting duct
MarrowQuant Across Aging and Aplasia: A Digital Pathology Workflow for Quantification of Bone Marrow Compartments in Histological Sections.
The bone marrow (BM) exists heterogeneously as hematopoietic/red or adipocytic/yellow marrow depending on skeletal location, age, and physiological condition. Mouse models and patients undergoing radio/chemotherapy or suffering acute BM failure endure rapid adipocytic conversion of the marrow microenvironment, the so-called "red-to-yellow" transition. Following hematopoietic recovery, such as upon BM transplantation, a "yellow-to-red" transition occurs and functional hematopoiesis is restored. Gold Standards to estimate BM cellular composition are pathologists' assessment of hematopoietic cellularity in hematoxylin and eosin (H&E) stained histological sections as well as volumetric measurements of marrow adiposity with contrast-enhanced micro-computerized tomography (CE-μCT) upon osmium-tetroxide lipid staining. Due to user-dependent variables, reproducibility in longitudinal studies is a challenge for both methods. Here we report the development of a semi-automated image analysis plug-in, MarrowQuant, which employs the open-source software QuPath, to systematically quantify multiple bone components in H&E sections in an unbiased manner. MarrowQuant discerns and quantifies the areas occupied by bone, adipocyte ghosts, hematopoietic cells, and the interstitial/microvascular compartment. A separate feature, AdipoQuant, fragments adipocyte ghosts in H&E-stained sections of extramedullary adipose tissue to render adipocyte area and size distribution. Quantification of BM hematopoietic cellularity with MarrowQuant lies within the range of scoring by four independent pathologists, while quantification of the total adipocyte area in whole bone sections compares with volumetric measurements. Employing our tool, we were able to develop a standardized map of BM hematopoietic cellularity and adiposity in mid-sections of murine C57BL/6 bones in homeostatic conditions, including quantification of the highly predictable red-to-yellow transitions in the proximal section of the caudal tail and in the proximal-to-distal tibia. Additionally, we present a comparative skeletal map induced by lethal irradiation, with longitudinal quantification of the "red-to-yellow-to-red" transition over 2 months in C57BL/6 femurs and tibiae. We find that, following BM transplantation, BM adiposity inversely correlates with kinetics of hematopoietic recovery and that a proximal to distal gradient is conserved. Analysis of in vivo recovery through magnetic resonance imaging (MRI) reveals comparable kinetics. On human trephine biopsies MarrowQuant successfully recognizes the BM compartments, opening avenues for its application in experimental, or clinical contexts that require standardized human BM evaluation
Caspase cleavage of the Golgi stacking factor GRASP65 is required for Fas/CD95-mediated apoptosis
GRASP65 (Golgi reassembly and stacking protein of 65 KDa) is a cis-Golgi protein with roles in Golgi structure, membrane trafficking and cell signalling. It is cleaved by caspase-3 early in apoptosis, promoting Golgi fragmentation. We now show that cleavage is needed for Fas-mediated apoptosis: expression of caspase-resistant GRASP65 protects cells, whereas expression of membrane proximal caspase-cleaved GRASP65 fragments dramatically sensitises cells. GRASP65 coordinates passage through the Golgi apparatus of proteins containing C-terminal hydrophobic motifs, via its tandem PDZ type ‘GRASP' domains. Fas/CD95 contains a C-terminal leucine–valine pairing so its trafficking might be coordinated by GRASP65. Mutagenesis of the Fas/CD95 LV motif reduces the number of cells with Golgi-associated Fas/CD95, and generates a receptor that is more effective at inducing apoptosis; however, siRNA-mediated silencing or expression of mutant GRASP65 constructs do not alter the steady state distribution of Fas/CD95. We also find no evidence for a GRASP65–Fas/CD95 interaction at the molecular level. Instead, we find that the C-terminal fragments of GRASP65 produced following caspase cleavage are targeted to mitochondria, and ectopic expression of these sensitises HeLa cells to Fas ligand. Our data suggest that GRASP65 cleavage promotes Fas/CD95-mediated apoptosis via release of C-terminal fragments that act at the mitochondria, and we identify Bcl-XL as a candidate apoptotic binding partner for GRASP65
An OBSL1-Cul7Fbxw8 Ubiquitin Ligase Signaling Mechanism Regulates Golgi Morphology and Dendrite Patterning
The elaboration of dendrites in neurons requires secretory trafficking through the Golgi apparatus, but the mechanisms that govern Golgi function in neuronal morphogenesis in the brain have remained largely unexplored. Here, we report that the E3 ubiquitin ligase Cul7Fbxw8 localizes to the Golgi complex in mammalian brain neurons. Inhibition of Cul7Fbxw8 by independent approaches including Fbxw8 knockdown reveals that Cul7Fbxw8 is selectively required for the growth and elaboration of dendrites but not axons in primary neurons and in the developing rat cerebellum in vivo. Inhibition of Cul7Fbxw8 also dramatically impairs the morphology of the Golgi complex, leading to deficient secretory trafficking in neurons. Using an immunoprecipitation/mass spectrometry screening approach, we also uncover the cytoskeletal adaptor protein OBSL1 as a critical regulator of Cul7Fbxw8 in Golgi morphogenesis and dendrite elaboration. OBSL1 forms a physical complex with the scaffold protein Cul7 and thereby localizes Cul7 at the Golgi apparatus. Accordingly, OBSL1 is required for the morphogenesis of the Golgi apparatus and the elaboration of dendrites. Finally, we identify the Golgi protein Grasp65 as a novel and physiologically relevant substrate of Cul7Fbxw8 in the control of Golgi and dendrite morphogenesis in neurons. Collectively, these findings define a novel OBSL1-regulated Cul7Fbxw8 ubiquitin signaling mechanism that orchestrates the morphogenesis of the Golgi apparatus and patterning of dendrites, with fundamental implications for our understanding of brain development
A Genome-Wide RNAi Screen Identifies Regulators of Cholesterol-Modified Hedgehog Secretion in Drosophila
Hedgehog (Hh) proteins are secreted molecules that function as organizers in animal development. In addition to being palmitoylated, Hh is the only metazoan protein known to possess a covalently-linked cholesterol moiety. The absence of either modification severely disrupts the organization of numerous tissues during development. It is currently not known how lipid-modified Hh is secreted and released from producing cells. We have performed a genome-wide RNAi screen in Drosophila melanogaster cells to identify regulators of Hh secretion. We found that cholesterol-modified Hh secretion is strongly dependent on coat protein complex I (COPI) but not COPII vesicles, suggesting that cholesterol modification alters the movement of Hh through the early secretory pathway. We provide evidence that both proteolysis and cholesterol modification are necessary for the efficient trafficking of Hh through the ER and Golgi. Finally, we identified several putative regulators of protein secretion and demonstrate a role for some of these genes in Hh and Wingless (Wg) morphogen secretion in vivo. These data open new perspectives for studying how morphogen secretion is regulated, as well as provide insight into regulation of lipid-modified protein secretion
Proteomic Analysis of Rta2p-Dependent Raft-Association of Detergent-Resistant Membranes in Candida albicans
In Candida albicans, lipid rafts (also called detergent-resistant membranes, DRMs) are involved in many cellular processes and contain many important proteins. In our previous study, we demonstrated that Rta2p was required for calcineurin-mediated azole resistance and sphingoid long-chain base release in C. albicans. Here, we found that Rta2p was co-localized with raft-constituted ergosterol on the plasma membrane of C. albicans. Furthermore, this membrane expression pattern was totally disturbed by inhibitors of either ergosterol or sphingolipid synthesis. Biochemical fractionation of DRMs together with immunoblot uncovered that Rta2p, along with well-known DRM-associated proteins (Pma1p and Gas1p homologue), was associated with DRMs and their associations were blocked by inhibitors of either ergosterol or sphingolipid synthesis. Finally, we used the proteomic analysis together with immunoblot and identified that Rta2p was required for the association of 10 proteins with DRMs. These 5 proteins (Pma1p, Gas1p homologue, Erg11p, Pmt2p and Ali1p) have been reported to be DRM-associated and also that Erg11p is a well-known target of azoles in C. albicans. In conclusion, our results showed that Rta2p was predominantly localized in lipid rafts and was required for the association of certain membrane proteins with lipid rafts in C. albicans
Towards more efficient longline fisheries: fish feeding behaviour, bait characteristics and development of alternative baits
Recommended from our members
Conflict prevention in practice ::essays in honour of James Sutterlin /
Precocious Sexual Maturation in Atlantic Salmon (<i>Salmo salar</i>) Postsmolts Reared in a Seawater Impoundment
Female Atlantic salmon, Salmo salar, usually become sexually mature following a minimum of one winter at sea. Between 4 and 16% maturation was observed for both sexes in two different stocks of salmon placed in sea water as 1+ yr smolts and subsequently reared one summer. Only the larger females and the smaller males matured. Egg size and fertility appeared normal. Smoltification at an early age or accelerated growth rates may be responsible for this phenomenon. Key words: Salinity tolerance, pen-rearing, brood stock, growth rates </jats:p
- …
