47 research outputs found

    A customized monocyte cDNA microarray for diagnosis of rheumatoid arthritis and prognosis of anti-TNF-α therapy

    Get PDF
    Background In rheumatoid arthritis (RA) macrophages (Mf) play a pivotal role. They become highly activated in synovitis and at the cartilage–pannus junction. Furthermore, therapeutic neutralization of molecules produced by activated Mf lead to clinical improvement in RA, and circulating monocytes (MO) of the peripheral blood in patients with RA spontaneously express proinflammatory genes (IL-1ÎČ, IL-6, TNF). Methods A custom RA-MO cDNA microarray was generated using differentially expressed genes obtained from gene subtraction and from comparative whole genome wide U133A analysis in normal donors, active and anti-TNF-α created RA patients. Genes were selected using MAS 5.0, multtest and PAM. The custom microarray consists of 313 genes including guide dots, and positive (housekeeping genes and spike controls) and negative controls for image and statistical analysis. Each probe was spotted in 16 replicates. Results The RA-MO chipset-II was validated using the following: non-stimulated and LPS, PMA, Vit.D3+LPS, PMA+LPS stimulated U937 cells; nonstimulated and LPS stimulated healthy donor MO; MO from normal donors (n = 3) and RA patients before and during anti-TNF-α treatment (n = 5 each); and synovial tissue from normal individuals (n = 2) and RA patients (n = 2). Not only LPS/PMA regulated genes but also RA specific and anti-TNF-α regulated genes were validated. In addition, we could clarify whether these genes are differentially transcribed only in MO or whether they can also be found in RA tissue Mf. Our data indicate a high degree of reproducibility that is sufficient for diagnostic applications and therapy monitoring. Conclusion The RA-MO chipset-II microarray is competitive and flexible for enlargement of the number of genes. The current gene selection will contribute to validating the role of monocytes in disease activity, to therapeutic interventions, and may improve the knowledge on the regulation of pathways in activated monocytes in chronic inflammation

    Transcriptional profiling identifies differential expression of long non-coding RNAs in Jo-1 associated and inclusion body myositis.

    Get PDF
    Myositis is characterised by muscle inflammation and weakness. Although generally thought to be driven by a systemic autoimmune response, increasing evidence suggests that intrinsic changes in the muscle might also contribute to the pathogenesis. Long non-coding RNAs (lncRNAs) are a family of novel genes that regulate gene transcription and translation. To determine the potential role of lncRNAs, we employed next generation sequencing to examine the transcriptome in muscle biopsies obtained from two histologically distinct patient populations, inclusion body myositis (IBM) and anti-Jo-1-associated myositis (Jo-1). 1287 mRNAs and 1068 mRNAs were differentially expressed in the muscle from Jo-1 and IBM patients, respectively. Pathway analysis showed the top canonical pathway in both Jo-1 and IBM was oxidative phosphorylation and mitochondrial dysfunction. We identified 731 known and 325 novel lncRNAs in the muscles biopsies. Comparison with controls showed 55 and 46 lncRNAs were differentially expressed in IBM and Jo-1 myositis, respectively. Of these, 16 lncRNAs were differentially expressed in both IBM and Jo-1 myositis and included upregulated H19, lncMyoD and MALAT1. Given that these are known to regulate muscle proliferation and differentiation, we speculate that changes in lncRNAs might contribute to the phenotypic changes in Jo-1 and IBM myositis

    Chromosome conformation signatures define predictive markers of inadequate response to methotrexate in early rheumatoid arthritis

    Get PDF
    The authors would like to thank members of OBD Reference Facility Benjamin Foulkes, Chloe Bird, Emily Corfeld and Matthew Salter for expedient processing of clinical samples on the EpiSwitchℱ platform and Magdalena Jeznach and Willem Westra for help with preparation of the manuscript. The study employed samples from the SERA Biobank used with permission and approval of the SERA Approval Group. We gratefully acknowledge the invaluable contribution of the clinicians and operating team in SERA. We would also like to thank Prof. Raju Kucherlapati (Harvard Medical School), and Prof. Jane Mellor (Oxford Univ.), Prof. John O’Shea (National Institute of Health) and Prof. John Isaacs (New Castle Univ.) for their independent and critical review of our study. A list of Scottish Early Rheumatoid Arthritis (SERA) inception cohort investigators is provided in Additional fle 1: Additional Note. Funding This work was funded by Oxford BioDynamics.Peer reviewedPublisher PD
    corecore