24 research outputs found

    Collaboration and knowledge exchange between scholars in Britain and the empire, 1830–1914

    Get PDF
    In recent years there has been a growing interest among historians in the British Empire as a space of knowledge production and circulation. Much of this work assumes that scholarly cooperation and collaboration between individuals and institutions within the Empire had the effect (and often also the aim) of strengthening both imperial ties and the idea of empire. This chapter argues, however, that many examples of scholarly travel, exchange, and collaboration were undertaken with very different goals in mind. In particular, it highlights the continuing importance of an ideal of scientific internationalism, which stressed the benefits of scholarship for the whole of humanity and prioritized the needs and goals of individual academic and scientific disciplines. As the chapter shows, some scholars even went on to develop nuanced critiques of the imperial project while using the very structures of empire to further their own individual, disciplinary and institutional goals

    Review

    No full text

    Review

    No full text

    Review

    No full text

    Review

    No full text

    Review

    No full text

    Paradoxer Pazifismus

    No full text

    Planet compatible pathways for transitioning the chemical industry

    No full text
    Chemical products, such as plastics, solvents, and fertilizers, are essential for supporting modern lifestyles. Yet, producing, using and disposing of chemicals creates adverse environmental impacts which threaten the industry\u27s license to operate. This study presents seven planet compatible pathways towards 2050 employing demand-side and supply-side interventions with total investment costs of US$1.2-3.7 billion. Resource efficiency and circularity interventions reduce global chemicals demand by 23–33% and are critical for mitigating risks associated with using fossil feedstocks and carbon capture and sequestration, and constraints on available biogenic and recyclate feedstocks. Replacing fossil feedstocks with biogenic/air-capture sources, shifting carbon destinations from atmosphere to ground, and electrifying/decarbonizing energy supply for production technologies, could enable net negative emissions of 200 MtCO2eq yr-1, while still delivering essential chemical-based services to society
    corecore