77 research outputs found

    Probabilistic (logic) programming concepts

    Get PDF
    A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particular syntax, semantics and inference procedure. This makes it hard to understand the underlying programming concepts and appreciate the differences between the different languages. To obtain a better understanding of probabilistic programming, we identify a number of core programming concepts underlying the primitives used by various probabilistic languages, discuss the execution mechanisms that they require and use these to position and survey state-of-the-art probabilistic languages and their implementation. While doing so, we focus on probabilistic extensions of logic programming languages such as Prolog, which have been considered for over 20 years

    Lightweight String Reasoning for OCL

    Get PDF
    International audienceModels play a key role in assuring software quality in the modeldriven approach. Precise models usually require the definition of OCL expressions to specify model constraints that cannot be expressed graphically. Techniques that check the satisfiability of such models and find corresponding instances of them are important in various activities, such as model-based testing and validation. Several tools to check model satisfiability have been developed but to our knowledge, none of them yet supports the analysis of OCL expressions including operations on Strings in general terms. As, in contrast, many industrial models do contain such operations, there is evidently a gap. There has been much research on formal reasoning on strings in general, but so far the results could not be included into model finding approaches. For model finding, string reasoning only contributes a sub-problem, therefore, a string reasoning approach for model finding should not add up front too much computational complexity to the global model finding problem. We present such a lightweight approach based on constraint satisfaction problems and constraint rewriting. Our approach efficiently solves several common kinds of string constraints and it is integrated into the EMFtoCSP model finder

    Reliability of the TekScan MatScan® system for the measurement of plantar forces and pressures during barefoot level walking in healthy adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plantar pressure systems are increasingly being used to evaluate foot function in both research settings and in clinical practice. The purpose of this study was to investigate the reliability of the TekScan MatScan<sup>® </sup>system in assessing plantar forces and pressures during barefoot level walking.</p> <p>Methods</p> <p>Thirty participants were assessed for the reliability of measurements taken one week apart for the variables maximum force, peak pressure and average pressure. The following seven regions of the foot were investigated; heel, midfoot, 3<sup>rd</sup>-5<sup>th </sup>metatarsophalangeal joint, 2<sup>nd </sup>metatarsophalangeal joint, 1<sup>st </sup>metatarsophalangeal joint, hallux and the lesser toes.</p> <p>Results</p> <p>Reliability was assessed using both the mean and the median values of three repeated trials. The system displayed moderate to good reliability of mean and median calculations for the three analysed variables across all seven regions, as indicated by intra-class correlation coefficients ranging from 0.44 to 0.95 for the mean and 0.54 to 0.97 for the median, and coefficients of variation ranging from 5 to 20% for the mean and 3 to 23% for the median. Selecting the median value of three repeated trials yielded slightly more reliable results than the mean.</p> <p>Conclusions</p> <p>These findings indicate that the TekScan MatScan<sup>® </sup>system demonstrates generally moderate to good reliability.</p

    Gene therapy clinical trials in Belgium

    No full text
    The present paper briefly describes the missing information about gene therapy clinical trials authorized in Belgium in relation with the regulatory framework. It also proposes a basic database format, complying with legal confidentiality rules. We then discuss transparency in the gene therapy field within the European Union.</p
    corecore