3,730 research outputs found
Actinomycosis may be presented in unusual organs: A report of two cases
Actinomycosis is a chronic granulomatous suppurative disease characterized by direct extension to the contagious tissue with the formation of multiple drainage sinus tracts through which tiny colonies of organisms called sulfur granules are discharged. Here, we report 2 cases of actinomycosis from Iran. One of them had actinomycosis on the hand and the other on the foot. Samples of tissue biopsy showed sulfur granules associated with colonies of actinomyces, thus confirming the diagnosis in both cases. The response to curettage and penicillin therapy was satisfactory in our patients. The chronic and indolent course of actinomycosis resembles tuberculosis, fungal infection and malignancy. So, increasing awareness among the clinicians and clinical microbiologists will help in the early diagnosis of the disease and in the initiation of early and proper treatment
Water quality index for the Skudai River and its tributaries for identifying the problematic areas for better watershed management
It is very important to develop a rehabilitation plan for the watersheds that have been degraded because of increased development activities and high urbanization. Identifying the most vulnerable parts of a watershed is challenging and can be done if water quality in the river was determined in different sections from the upstream to the downstream of a watershed. In this study, we delineated the Skudai River watershed into 25 sub-watersheds using ArcGIS technique. Later, we identified tributaries in each sub-watershed. The subwatersheds were grouped into three main categories, i.e. natural, semi-urban, and urban subwatersheds depending on land use patterns. Water quality samples were collected at different tributaries from all three categories of sub-watersheds. The paper presents water quality analysis results. The Skudai River (natural part) was classified into natural sub-watershed as this sub-watershed was dominated with natural forest. The Senai and Kempas rivers were classified into sub-urban watersheds while Melana and Danga rivers were classified into urban watersheds. The water quality index (WQI) for the Skudai River (Natural) was 95.2 and falls in Class I category, i.e. clean. The Senai River had WQI of 84.5 and Class II category, i.e. slightly polluted. However, Kempas River which was also in the sub-urban watershed had calculated WQI of 54.5, in Class III and polluted. Melana River was also polluted river with WQI of 68.8 (Class III). The Danga River was also polluted river with WQI value as 55.2. Water quality in the direction of flow in the Skudai River was deteriorating because of some local pollutants entry on the way
Effects of Zoledronate and Mechanical Loading during Simulated Weightlessness on Bone Structure and Mechanical Properties
Space flight modulates bone remodeling to favor bone resorption. Current countermeasures include an anti-resorptive drug class, bisphosphonates (BP), and high-force loading regimens. Does the combination of anti-resorptives and high-force exercise during weightlessness have negative effects on the mechanical and structural properties of bone? In this study, we implemented an integrated model to mimic mechanical strain of exercise via cyclical loading (CL) in mice treated with the BP Zoledronate (ZOL) combined with hindlimb unloading (HU). Our working hypothesis is that CL combined with ZOL in the HU model induces additive structural and mechanical changes. Thirty-two C57BL6 mice (male,16 weeks old, n8group) were exposed to 3 weeks of either HU or normal ambulation (NA). Cohorts of mice received one subcutaneous injection of ZOL (45gkg), or saline vehicle, prior to experiment. The right tibia was axially loaded in vivo, 60xday to 9N in compression, repeated 3xweek during HU. During the application of compression, secant stiffness (SEC), a linear estimate of slope of the force displacement curve from rest (0.5N) to max load (9.0N), was calculated for each cycle once per week. Ex vivo CT was conducted on all subjects. For ex vivo mechanical properties, non-CL left femurs underwent 3-point bending. In the proximal tibial metaphysis, HU decreased, CL increased, and ZOL increased the cancellous bone volume to total volume ratio by -26, +21, and +33, respectively. Similar trends held for trabecular thickness and number. Ex vivo left femur mechanical properties revealed HU decreased stiffness (-37),and ZOL mitigated the HU stiffness losses (+78). Data on the ex vivo Ultimate Force followed similar trends. After 3 weeks, HU decreased in vivo SEC (-16). The combination of CL+HU appeared additive in bone structure and mechanical properties. However, when HU + CL + ZOL were combined, ZOL had no additional effect (p0.05) on in vivo SEC. Structural data followed this trend with ZOL not modulating trabecular thickness in CL + NAHU mice. In summary, our integrated model simulates the combination of weightlessness, exercise-induced mechanical strain, and anti-resorptive treatment that astronauts experience during space missions. Based on these results, we conclude that, at the structural and stiffness level, zoledronate treatment during simulated spaceflight does not impede the skeletal response to axial compression. In contrast to our hypothesis, our data show that zoledronate confers no additional mechanical or structural benefit beyond those gained from cyclical loading
CSNL: A cost-sensitive non-linear decision tree algorithm
This article presents a new decision tree learning algorithm called CSNL that induces Cost-Sensitive Non-Linear decision trees. The algorithm is based on the hypothesis that nonlinear decision nodes provide a better basis than axis-parallel decision nodes and utilizes discriminant analysis to construct nonlinear decision trees that take account of costs of misclassification.
The performance of the algorithm is evaluated by applying it to seventeen datasets and the results are compared with those obtained by two well known cost-sensitive algorithms, ICET and MetaCost, which generate multiple trees to obtain some of the best results to date. The results show that CSNL performs at least as well, if not better than these algorithms, in more than twelve of the datasets and is considerably faster. The use of bagging with CSNL further enhances its performance showing the significant benefits of using nonlinear decision nodes.
The performance of the algorithm is evaluated by applying it to seventeen data sets and the results are
compared with those obtained by two well known cost-sensitive algorithms, ICET and MetaCost, which generate multiple trees to obtain some of the best results to date.
The results show that CSNL performs at least as well, if not better than these algorithms, in more than twelve of the data sets and is considerably faster.
The use of bagging with CSNL further enhances its performance showing the significant benefits of using non-linear decision nodes
Simulated Space Radiation: Murine Skeletal Responses During Recovery and with Mechanical Stimulation
Simulated space radiation at doses similar to those of solar particle events or a round-trip sojourn to Mars (1-2Gy) may cause skeletal tissue degradation and deplete stem/progenitor cell pools throughout the body. We hypothesized that simulated space radiation (SSR) causes late, time-dependent deficits in bone structure and bone cell function reflected by changes in gene expression in response to anabolic stimuli. We used a unique sequential dual ion exposure (proton and iron) for SSR to investigate time-dependence of responses in gene expression, cell function, and microarchitecture with respect to radiation and an anabolic stimulus of axial loading (AL). Male 16-wk C57BL6/J mice (n=120 total) were exposed to 0Gy (Sham, n=10), 56Fe (2Gy, positive control dose, n=10), or sequential ions for SSR (1Gy 1H/56Fe/1H, n=10) by total body irradiation (IR), and the tissues were harvested 2 or 6 mo. later. Further, to assess the response to anabolic stimuli, we subjected additional Sham-AL (n=15) and SSR-AL (n=15) groups to rest-inserted tibial axial loading (AL) starting at 1 and 5 months post-IR (-9N, 60 cycles/day, 3 days/wk, 4 wks). Exposure to 56Fe caused a significant reduction in cancellous bone volume fraction (BV/TV) compared to Sham (-34%) and SSR (-20%) in the proximal tibia metaphysis at 2-months post-IR; however BV/TV for SSR group was not different than Sham. Both 56Fe and SSR caused significant reduction in trabecular number (Tb.N) compared to Sham (-33% and -16%, respectively). Further, Tb.N for 56Fe (2Gy) was significantly lower than SSR (-21%). Ex vivo culture of marrow cells to assess growth and differentiation of osteoblast lineage cells 6 months post-IR showed that both 56Fe and SSR exposures significantly impaired colony formation compared to Sham (-66% and -54%, respectively), as well as nodule mineralization (-90% and -51%, respectively). Two-way analysis of variance showed that both mechanical loading and radiation reduced BV/TV, mechanical loading reduced trabecular thickness (Tb.Th), and radiation reduced Tb.N, at both time points. To assess acute response to mechanical stimuli, samples were harvested from a subset of Sham-AL (n=5) and SSR-AL (n=5) to measure changes in gene expression levels. Preliminary results indicate that axial loading increased expression of the antioxidant response gene Nfe2l2 and the osteoprogenitor-associated marker Runx2 in the bone marrow cells, and there was an interaction effect between axial loading and radiation at 2-months post-IR. Additional analyses of gene expression levels in the mineralized tissue are in progress. Results indicate that SSR caused persistent impairment of osteoblast colony formation and nodule mineralization 6-mo post-IR. Contrary to our hypothesis, simulated space radiation did not impair the ability of cancellous bone to respond to a mechanical anabolic stimulus, consistent with our previous findings [1]. Hence, compressive loading may be a potential countermeasure against spaceflight-induced bone loss
Ionizing Radiation Affects Gene Expression in Mouse Skin and Bone
Future long-duration space exploration beyond low earth orbit will increase human exposure to space radiation and microgravity conditions as well as associated risks to skeletal health. In animal studies, radiation exposure (greater than 1 Gy) is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility. Definitive measurements and detection of bone loss typically require large and specialized equipment which can make their application to long duration space missions logistically challenging. Towards the goal of developing non-invasive and less complicated monitoring methods to predict astronauts' health during spaceflight, we examined whether radiation induced gene expression changes in skin may be predictive of the responses of skeletal tissue to radiation exposure. We examined oxidative stress and growth arrest pathways in mouse skin and long bones by measuring gene expression levels via quantitative polymerase chain reaction (qPCR) after exposure to total body irradiation (IR). To investigate the effects of irradiation on gene expression, we used skin and femora (cortical shaft) from the following treatment groups: control (normally loaded, sham-irradiated), and IR (0.5 Gy 56Fe 600 MeV/n and 0.5 Gy 1H 150 MeV/n), euthanized at one and 11 days post-irradiation (IR). To determine the extent of bone loss, tibiae were harvested and cancellous microarchitecture in the proximal tibia quantified ex vivo using microcomputed tomography (microCT). Statistical analysis was performed using Student's t-test. At one day post-IR, expression of FGF18 in skin was significantly greater (3.8X) than sham-irradiated controls, but did not differ at 11 days post IR. Expression levels of other genes associated with antioxidant response (Nfe2l2, FoxO3 and Sod1) and the cell cycle (Trp53, Cdkn1a, Gadd45g) did not significantly differ between the control and IR groups at either time point. Radiation exposure resulted in a 27.0% increase in FGF18-positive hair follicles at one day post-IR and returned to basal levels at 11 days post-IR. A similar trend was observed from FGF18 gene expression analysis of skin. In bone (femora), there was an increase in the expression of the pro-osteoclastogenic cytokine, MCP-1, one day after IR compared to non-irradiated controls. FGF18 expression in skin and MCP- 1 expression in bone were found to be positively correlated (P less than 0.002, r=0.8779). Further, microcomputed tomography analysis of tibia from these animals showed reduced cancellous bone volume (-9.9%) at 11 days post- IR. These results suggest that measurements of early radiation induced changes in FGF18 gene expression in skin may have value for predicting subsequent loss of cancellous bone mass. Further research may lead to the development of a relatively simple diagnostic tool for bone loss, with the advantage that hair follicles and skin are relatively easy to acquire from human subjects
First confirmed records of white-coat pups of the Endangered Caspian seal Pusa caspica on the coast of Iran
(c) The Author/sfals
Ionizing Radiation Stimulates Expression of Pro-Osteoclastogenic Genes in Marrow and Skeletal Tissue
Exposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing osteoclasts within metabolically-active, cancellous-bone tissue leading to structural deficits. To better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the influence of total-body irradiation on expression of select cytokines known both to stimulate osteoclastogenesis and contribute to inflammatory bone disease. Adult (16wk), male C57BL/6J mice were exposed to either 2Gy gamma rays (137Cs, 0.8Gy/min) or heavy ions (56Fe, 600MeV, 0.50-1.1Gy/min); this dose corresponds to either a single fraction of radiotherapy (typical total dose is 10Gy) or accumulates over long-duration, interplanetary missions. Serum, marrow, and mineralized tissue were harvested 4hrs-7d later. Gamma irradiation caused a prompt (2.6-fold within 4hrs) and persistent (peaking at 4.1-fold within 1d) rise in the expression of the obligate osteoclastogenic cytokine, receptor activator of nuclear factor kappaB-ligand (Rankl) within marrow cells over controls. Similarly, Rankl expression peaked in marrow cells within 3d of iron exposure (9.2-fold). Changes in Rankl expression induced by gamma irradiation preceded and overlapped with a rise in expression of other pro-osteoclastic cytokines in marrow (e.g., monocyte chemotactic protein-1 increased 11.9-fold, tumor necrosis factor-alpha increased 1.7- fold over controls). Marrow expression of the RANKL decoy receptor, osteoprotegerin (Opg), also rose after irradiation (11.3-fold). The ratio Rankl/Opg in marrow was increased 1.8-fold, a net pro-resorption balance. As expected, radiation increased a serum marker of resorption (tartrate resistant acid phosphatase) and led to cancellous bone loss (16% decrease in bone volume/total volume) through reduced trabecular struts. We conclude that total-body irradiation (gamma or heavy-ion) caused temporal, concerted regulation of gene expression within marrow and mineralized tissue for select cytokines which are responsible for osteoclastogenesis and elevated resorption; this is likely to account for rapid and progressive 52 deterioration of cancellous microarchitecture following exposure to ionizing radiation
Dried Plum Diet Prevents Bone Loss Caused by Ionizating Radiation: Reduces Pro-Resorption Cytokine Expression, and Protects Marrow-Derived Osteoprogenitors
Future long duration missions outside the protection of the Earth's magnetosphere, or unshielded exposures to solar particle events, achieves total doses capable of causing cancellous bone loss. Cancellous bone loss caused by ionizing radiation occurs quite rapidly in rodents: Initially, radiation increases the number and activity of bone-resorbing osteoclasts, followed by decrease in bone forming osteoblast cells. Here we report that Dried Plum (DP) diet completely prevented cancellous bone loss caused by ionizing radiation (Figure 1). DP attenuated marrow expression of genes related to bone resorption (Figure 2), and protected the bone marrow-derived pre-osteoblasts ex vivo from total body irradiation (Figure 3). DP is known to inhibit resorption in models of aging and ovariectomy-induced osteopenia; this is the first report that dietary DP is radioprotective
Gas Accretion and Star Formation Rates
Cosmological numerical simulations of galaxy evolution show that accretion of
metal-poor gas from the cosmic web drives the star formation in galaxy disks.
Unfortunately, the observational support for this theoretical prediction is
still indirect, and modeling and analysis are required to identify hints as
actual signs of star-formation feeding from metal-poor gas accretion. Thus, a
meticulous interpretation of the observations is crucial, and this
observational review begins with a simple theoretical description of the
physical process and the key ingredients it involves, including the properties
of the accreted gas and of the star-formation that it induces. A number of
observations pointing out the connection between metal-poor gas accretion and
star-formation are analyzed, specifically, the short gas consumption time-scale
compared to the age of the stellar populations, the fundamental metallicity
relationship, the relationship between disk morphology and gas metallicity, the
existence of metallicity drops in starbursts of star-forming galaxies, the
so-called G dwarf problem, the existence of a minimum metallicity for the
star-forming gas in the local universe, the origin of the alpha-enhanced gas
forming stars in the local universe, the metallicity of the quiescent BCDs, and
the direct measurements of gas accretion onto galaxies. A final section
discusses intrinsic difficulties to obtain direct observational evidence, and
points out alternative observational pathways to further consolidate the
current ideas.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics
and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by
Springe
- …
