7,952 research outputs found
Electronic structures of antiperovskite superconductors: MgXNi (X=B,C,N)
We have investigated electronic structures of a newly discovered
antiperovskite superconductor MgCNi and related compounds MgBNi and
MgNNi. In MgCNi, a peak of very narrow and high density of states is
located just below , which corresponds to the antibonding
state of Ni-3d and C- but with the predominant Ni-3d character. The
prominent nesting feature is observed in the -centered electron Fermi
surface of an octahedron-cage-like shape that originates from the 19th band.
The estimated superconducting parameters based on the simple rigid-ion
approximation are in reasonable agreement with experiment, suggesting that the
superconductivity in MgCNi is described well by the conventional phonon
mechanism.Comment: 5 pages, 5 figure
Electronic Structures of Antiperovskite Superconductor MgCNi and Related Compounds
Electronic structure of a newly discovered antiperovskite superconductor
MgCNi is investigated by using the LMTO band method. The main contribution
to the density of states (DOS) at the Fermi energy comes from Ni
3 states which are hybridized with C 2 states. The DOS at is
varied substantially by the hole or electron doping due to the very high and
narrow DOS peak located just below . We have also explored
electronic structures of C-site and Mg-site doped MgCNi systems, and
described the superconductivity in terms of the conventional phonon mechanism.Comment: 3 pages, presented at ORBITAL2001 September 11-14, 2001 (Sendai,
JAPAN
Nonlocal Entanglement of 1D Thermal States Induced by Fermion Exchange Statistics
When two identical fermions exchange their positions, their wave function
gains phase factor . We show that this distance-independent effect can
induce nonlocal entanglement in one-dimensional (1D) electron systems having
Majorana fermions at the ends. It occurs in the system bulk and has nontrivial
temperature dependence. In a system having a single Majorana at each end, the
nonlocal entanglement has a Bell-state form at zero temperature and decays as
temperature increases, vanishing suddenly at certain finite temperature. In a
system having two Majoranas at each end, it is in a cluster-state form and its
nonlocality is more noticeable at finite temperature. By contrast, thermal
states of corresponding 1D spins do not have nonlocal entanglement
Analytic study of the urn model for separation of sand
We present an analytic study of the urn model for separation of sand recently
introduced by Lipowski and Droz (Phys. Rev. E 65, 031307 (2002)). We solve
analytically the master equation and the first-passage problem. The analytic
results confirm the numerical results obtained by Lipowski and Droz. We find
that the stationary probability distribution and the shortest one among the
characteristic times are governed by the same free energy. We also analytically
derive the form of the critical probability distribution on the critical line,
which supports their results obtained by numerically calculating Binder
cumulants (cond-mat/0201472).Comment: 6 pages including 3 figures, RevTe
Electronic structure of metallic antiperovskite compound GaCMn
We have investigated electronic structures of antiperovskite GaCMn and
related Mn compounds SnCMn, ZnCMn, and ZnNMn. In the paramagnetic
state of GaCMn, the Fermi surface nesting feature along the
direction is observed, which induces the antiferromagnetic (AFM) spin ordering
with the nesting vector {\bf Q} . Calculated
susceptibilities confirm the nesting scenario for GaCMn and also explain
various magnetic structures of other antiperovskite compounds. Through the band
folding effect, the AFM phase of GaCMn is stabilized. Nearly equal
densities of states at the Fermi level in the ferromagnetic and AFM phases of
GaCMn indicate that two phases are competing in the ground state.Comment: 4 pages, 5 figure
Spin-Orbit Qubits of Rare-Earth-Metal Ions in Axially Symmetric Crystal Fields
Contrary to the well known spin qubits, rare-earth qubits are characterized
by a strong influence of crystal field due to large spin-orbit coupling. At low
temperature and in the presence of resonance microwaves, it is the magnetic
moment of the crystal-field ground-state which nutates (for several s) and
the Rabi frequency is anisotropic. Here, we present a study of the
variations of with the magnitude and direction of the
static magnetic field for the odd Er isotope in a single
crystal CaWO:Er. The hyperfine interactions split the
curve into eight different curves which are fitted
numerically and described analytically. These "spin-orbit qubits" should allow
detailed studies of decoherence mechanisms which become relevant at high
temperature and open new ways for qubit addressing using properly oriented
magnetic fields
Temperature-dependent Fermi surface evolution in heavy fermion CeIrIn5
In Cerium-based heavy electron materials, the 4f electron's magnetic moments
bind to the itinerant quasiparticles to form composite heavy quasiparticles at
low temperature. The volume of the Fermi surfacein the Brillouin zone
incorporates the moments to produce a "large FS" due to the Luttinger theorem.
When the 4f electrons are localized free moments, a "small FS" is induced since
it contains only broad bands of conduction spd electrons. We have addressed
theoretically the evolution of the heavy fermion FS as a function of
temperature, using a first principles dynamical mean-field theory (DMFT)
approach combined with density functional theory (DFT+DMFT). We focus on the
archetypical heavy electrons in CeIrIn5, which is believed to be near a quantum
critical point. Upon cooling, both the quantum oscillation frequencies and
cyclotron masses show logarithmic scaling behavior (~ ln(T_0/T)) with different
characteristic temperatures T_0 = 130 and 50 K, respectively. The resistivity
coherence peak observed at T ~ 50 K is the result of the competition between
the binding of incoherent 4f electrons to the spd conduction electrons at Fermi
level and the formation of coherent 4f electrons.Comment: 5 pages main article,3 figures for the main article, 2 page
Supplementary information, 2 figures for the Supplementary information.
Supplementary movie 1 and 2 are provided on the
webpage(http://www-ph.postech.ac.kr/~win/supple.html
- …
