8 research outputs found

    A proposal to determine the distribution of lateral forces from loaded recycled plastic drainage kerbs

    Get PDF
    Abstract: This study presents a detailed analysis of the lateral forces generated as a result of vertically applied loads to recycled plastic drainage kerbs. These kerbs are a relatively new addition to road infrastructure projects. When concrete is used to form road drainage kerbs, its deformation is minimum when stressed under heavy axle loads. Although recycled plastic kerbs are more environmentally friendly as a construction product, they are less stiff than concrete and tend to deform more under loading leading to a bursting type, lateral force being applied to the haunch materials, the magnitude of which is unknown. A method is proposed for establishing the distribution of these lateral forces resulting from deformation under laboratory test conditions. A load of 400 kN is applied onto a total of six typical kerbs in the laboratory in accordance with the test standard. The drainage kerbs are surrounded with 150 mm of concrete to the front and rear haunch and underneath as is normal during installation. The lateral forces exerted on the concrete surround as a result of deformation of the plastic kerbs are determined via a strain measuring device. Analysis of the test data allows the magnitude of the lateral forces to the surrounding media to be determined and, thereby, ensuring the haunch materials are not over-stressed as a result. The proposed test methodology and subsequent analysis allows for an important laboratory-based assessment of any typical recycled plastic drainage kerbs to be conducted to ensure they are fit-for-purpose in the field

    Reuse of Plastic Waste in Paver Blocks

    No full text

    Atranorin, an antimicrobial metabolite from lichen <i>Parmotrema rampoddense</i> exhibited in vitro anti-breast cancer activity through interaction with Akt activity

    No full text
    Atranorin (ATR), lichenized secondary metabolite and depside molecule with several biological potentials such as antimicrobial, anticancer, anti-inflammatory, antinociceptive, wound healing and photoprotective activities. Cytotoxic reports of ATR are documented in several cancer cells and in vivo models but its molecular interaction studies are poorly understood. Therefore, in this present investigation, we have used the in silico studies with biological validation of the molecular targets for the anti-breast cancer mechanism of ATR. The molecular docking studies with the breast cancer oncoproteins such as Bcl-2, Bax, Akt, Bcl-w and Bcl-xL revealed the highest interaction was observed with the Akt followed by Bax, Bcl-xL and Bcl-2 & least with the Bcl-w proteins. The cytotoxicity studies showed ATR selectively inhibited MDA MB-231 and MCF-7 breast cancer cells in differential and dose-dependent manner with the IC50 concentration of 5.36 ± 0.85 μM and 7.55 ± 1.2 μM respectively. Further mechanistic investigations revealed that ATR significantly inhibited ROS production and significantly down-regulated the anti apoptotic Akt than Bcl-2, Bcl-xL and Bcl-w proteins with a significant increase in the Bax level and caspases-3 activity in the breast cancer cells when comparison with Akt inhibitor, ipatasertib. In vitro biological activities well correlated with the molecular interaction data suggesting that atranorin had higher interaction with Akt than Bax and Bcl-2 but weak interaction with Bcl-w and Bcl-xL. In this present study, the first time we report the interactions of atranorin with molecular targets for anti-breast cancer potential. Hence, ATR represents the nature-inspired molecule for pharmacophore moiety for design in targeted therapy. Communicated by Ramaswamy H. Sarma</p
    corecore