62 research outputs found

    Symptom Remission and Brain Cortical Networks at First Clinical Presentation of Psychosis: The OPTiMiSE Study

    Get PDF
    Individuals with psychoses have brain alterations, particularly in frontal and temporal cortices, that may be particularly prominent, already at illness onset, in those more likely to have poorer symptom remission following treatment with the first antipsychotic. The identification of strong neuroanatomical markers of symptom remission could thus facilitate stratification and individualized treatment of patients with schizophrenia. We used magnetic resonance imaging at baseline to examine brain regional and network correlates of subsequent symptomatic remission in 167 medication-naĂŻve or minimally treated patients with first-episode schizophrenia, schizophreniform disorder, or schizoaffective disorder entering a three-phase trial, at seven sites. Patients in remission at the end of each phase were randomized to treatment as usual, with or without an adjunctive psycho-social intervention for medication adherence. The final follow-up visit was at 74 weeks. A total of 108 patients (70%) were in remission at Week 4, 85 (55%) at Week 22, and 97 (63%) at Week 74. We found no baseline regional differences in volumes, cortical thickness, surface area, or local gyrification between patients who did or did not achieved remission at any time point. However, patients not in remission at Week 74, at baseline showed reduced structural connectivity across frontal, anterior cingulate, and insular cortices. A similar pattern was evident in patients not in remission at Week 4 and Week 22, although not significantly. Lack of symptom remission in first-episode psychosis is not associated with regional brain alterations at illness onset. Instead, when the illness becomes a stable entity, its association with the altered organization of cortical gyrification becomes more defined

    Remission from antipsychotic treatment in first episode psychosis related to longitudinal changes in brain glutamate

    Get PDF
    Neuroimaging studies in schizophrenia have linked elevated glutamate metabolite levels to non-remission following antipsychotic treatment, and also indicate that antipsychotics can reduce glutamate metabolite levels. However, the relationship between symptomatic reduction and change in glutamate during initial antipsychotic treatment is unclear. Here we report proton magnetic resonance spectroscopy (1H-MRS) measurements of Glx and glutamate in the anterior cingulate cortex (ACC) and thalamus in patients with first episode psychosis (n = 23) at clinical presentation, and after 6 weeks and 9 months of treatment with antipsychotic medication. At 9 months, patients were classified into Remission (n = 12) and Non-Remission (n = 11) subgroups. Healthy volunteers (n = 15) were scanned at the same three time-points. In the thalamus, Glx varied over time according to remission status (P = 0.020). This reflected an increase in Glx between 6 weeks and 9 months in the Non-Remission subgroup that was not evident in the Remission subgroup (P = 0.031). In addition, the change in Glx in the thalamus over the 9 months of treatment was positively correlated with the change in the severity of Positive and Negative Syndrome Scale (PANSS) positive, total and general symptoms (P<0.05). There were no significant effects of group or time on glutamate metabolites in the ACC, and no differences between either patient subgroup and healthy volunteers. These data suggest that the nature of the response to antipsychotic medication may be related to the pattern of changes in glutamatergic metabolite levels over the course of treatment. Specifically, longitudinal reductions in thalamic Glx levels following antipsychotic treatment are associated with symptomatic improvement
    • …
    corecore