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Remission from antipsychotic treatment in first episode
psychosis related to longitudinal changes in brain glutamate
Kate Merritt 1, Rocio Perez-Iglesias1,4, Kyra-Verena Sendt1, Rhianna Goozee1, Sameer Jauhar1, Fiona Pepper1, Gareth J Barker2,
Birte Glenthøj3, Celso Arango4, Shôn Lewis5, René Kahn6, James Stone 2, Oliver Howes1, Paola Dazzan1, Philip McGuire1 and
Alice Egerton1

Neuroimaging studies in schizophrenia have linked elevated glutamate metabolite levels to non-remission following antipsychotic
treatment, and also indicate that antipsychotics can reduce glutamate metabolite levels. However, the relationship between
symptomatic reduction and change in glutamate during initial antipsychotic treatment is unclear. Here we report proton magnetic
resonance spectroscopy (1H-MRS) measurements of Glx and glutamate in the anterior cingulate cortex (ACC) and thalamus in
patients with first episode psychosis (n= 23) at clinical presentation, and after 6 weeks and 9 months of treatment with
antipsychotic medication. At 9 months, patients were classified into Remission (n= 12) and Non-Remission (n= 11) subgroups.
Healthy volunteers (n= 15) were scanned at the same three time-points. In the thalamus, Glx varied over time according to
remission status (P= 0.020). This reflected an increase in Glx between 6 weeks and 9 months in the Non-Remission subgroup that
was not evident in the Remission subgroup (P= 0.031). In addition, the change in Glx in the thalamus over the 9 months of
treatment was positively correlated with the change in the severity of Positive and Negative Syndrome Scale (PANSS) positive, total
and general symptoms (P<0.05). There were no significant effects of group or time on glutamate metabolites in the ACC, and no
differences between either patient subgroup and healthy volunteers. These data suggest that the nature of the response to
antipsychotic medication may be related to the pattern of changes in glutamatergic metabolite levels over the course of treatment.
Specifically, longitudinal reductions in thalamic Glx levels following antipsychotic treatment are associated with symptomatic
improvement.
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INTRODUCTION
In around one-third of patients with schizophrenia, treatment with
antipsychotic medication is ineffective,1–3 but the underlying
neurobiological mechanisms of treatment response are not well
understood. Schizophrenia is associated with disruptions in brain
glutamatergic neurotransmission,4,5 and recent neuroimaging
studies have indicated that the nature of the antipsychotic
response may be related to brain glutamate levels.6–11 In patients
with first episode psychosis prior to treatment, elevated glutamate
in the anterior cingulate cortex (ACC) have been associated with a
lower likelihood of reaching remission after 4 weeks of
amisulpride.8 Similarly, in established schizophrenia, higher levels
of Glx (the combined signal from glutamate plus glutamine) in the
medial frontal cortex have been associated with a poor response
after restarting antipsychotic medication.10 Elevated ACC gluta-
matergic metabolites have also been reported in first episode
patients who had failed to achieve remission following anti-
psychotic treatment,7 in patients who were treatment resistant6,9

and in patients resistant to clozapine.12 Elevated glutamate

metabolites in treatment-resistant schizophrenia have also been
described in the caudate nucleus.11

While brain glutamate metabolite levels have thus been related
to antipsychotic response,8 levels of these metabolites may be
reduced by antipsychotic medication.13 In patients with first
episode psychosis, longitudinal reductions in glutamate in the
ACC and left thalamus have been observed over 4 weeks of
antipsychotic treatment,8 and longitudinal reductions in gluta-
mine and Glx in the left thalamus have been reported after 30 and
80 months of treatment.14,15 Glutamate reductions have also been
reported in the frontal cortex, following 4 and 6 months of
antipsychotic treatment,16–18 and in the striatum following 4 weeks
of antipsychotic treatment.18,19 However, reductions in glutama-
tergic metabolites in the thalamus20 or ACC20,21 have not been
detected by other studies. Studies in patients with chronic
schizophrenia have produced mixed findings, some reporting
reductions in glutamate levels following antipsychotic treatment
in the frontal22 and temporal cortex,23 but others finding no
change (in frontal cortex,23–25 temporal cortex25 and
thalamus23,25).
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If there are longitudinal reductions in glutamate levels with
antipsychotic treatment, we hypothesised that these may be
related to symptomatic improvement. The present study aimed to
test this by examining the relationship between glutamate
metabolites in the ACC and thalamus and remission status at
three timepoints over the first 9 months of antipsychotic
treatment in patients with first episode psychosis. The present
dataset is an extension to our previous study, which investigated
the relationship between glutamate and treatment response over
4 weeks, reporting that elevated glutamate in the ACC at first
presentation predicted poor antipsychotic response.8 Here we
extend to a longer follow-up period of 9 months in a subset of this
cohort. This duration of treatment corresponds to that in our
previous cross-sectional study, which found that after 9 months of
treatment, first episode patients who had not achieved remission
had higher ACC glutamate levels than those in remission.7 To aid
interpretation of our findings, we also assessed a sample of
healthy volunteers over the same time period.

RESULTS
At 9 months, 12 patients met Remission criteria and 11 patients
met criteria for Non-Remission. There were no significant
differences in demographic variables between the Remission
and Non-Remission subgroups, in substance use (Supplementary
Table 1) or in duration of or adherence to antipsychotic
medication at any timepoint (Table 1 and Supplementary Notes).
At the time of the baseline scan, 4 patients were medication naïve,
and all but one of the remaining patients were receiving
amisulpride. At the 6 weeks and 9 month timepoint the Remission
and Non-Remission groups were taking a similar set of
antipsychotic drugs, and did not differ in chlorpromazine
equivalent dose (Table 1). Please see Table 1 and Supplementary
Notes for group differences in PANSS scores at each timepoint.
Variables relating to 1H-MRS data quality are provided in

Supplementary Table 2. For one patient Glx and glutamate data
from the thalamus were below 20% CRLB, reducing the sample to
n= 22, and for one healthy volunteer Glx data from the thalamus
were below 20% CRLB, reducing the sample to n= 14. There were
no significant group differences for spectra quality (Supplemen-
tary Table 2) or voxel tissue content (Table 2).
For both Glx and Glutamate in the ACC, there were no

significant main or interaction effects of remission status or time
(Fig. 1, Supplementary Table 3). This was also the case when time
to follow-up was included as a covariate, and when analysis was
restricted to patients who were adherent to antipsychotic
medication at least 75% of the time. There were no significant
relationships between the longitudinal percentage change in ACC
glutamatergic metabolites and the percentage change in symp-
toms over time (Supplementary Table 4). There was also no
significant difference in ACC glutamate metabolite levels over
time in healthy volunteers compared to the overall patient sample
(Fig. 2).
Glx levels in the left thalamus showed a significant interaction

between remission status and time (F(2,40)= 4.337, P= 0.020,
repeated measures ANOVA, Fig. 1). The main effects of remission
status (F(1,20)= 0.121, P= 0.731) and time (F(2,40)= 2.541, P=
0.091) were non-significant. At 9 months, Glx levels in the
thalamus were significantly higher in the Non-Remission com-
pared to Remission group (F(1,20)= 5.244, P= 0.033, Cohen’s d=
0.98, one-way ANOVA). This was related to a significant effect of
time in the Non-Remission group (F(2,20)= 6.183, P= 0.008,
repeated measures ANOVA), which reflected an increase in Glx
concentration between 6 weeks and 9 months (P= 0.031, Cohen’s
d= 1.24, Bonferroni-corrected pairwise comparisons). Within the
Remission subgroup, Glx levels did not vary significantly over time
(F(2,20)= 1.849, P= 0.183, repeated measures ANOVA). Similar
results were obtained when the analysis was restricted to patients

who reported being medication adherent at least 75% of the time
(Supplementary Figure 2). There were no significant differences in
thalamic Glx levels over time in the healthy volunteer group
compared to the overall patient sample (Fig. 2, Supplementary
Table 3).
Glutamate levels in the left thalamus showed a significant effect

of time (F(2,40)= 7.306, P= 0.002, repeated measures ANOVA),
while the main effects of remission status (F(1,20)= 0.036, P=
0.852) and the remission status x time interaction were not
significant (F(2,40)= 1.310, P= 0.281, Fig. 1). The effect of time
reflected a significant decrease in thalamic glutamate across both
patient subgroups between baseline and 6 weeks (P= 0.005,
Bonferroni-corrected pairwise comparisons), and a significant
increase between 6 weeks and 9 months (P= 0.010, Cohen’s d
=−0.67). The results remained the same when the analysis was
restricted to patients who were adherent to antipsychotic
medication at least 75% of the time. When the entire patient
sample was compared to the healthy volunteer sample, the effect
of time on glutamate in the thalamus was apparent across all
subjects (healthy volunteers and patients) (F(2,70)= 3.753, P=
0.028, repeated measures ANOVA), and was related to a significant
decrease in glutamate between baseline and 6 weeks (P= 0.045,
Cohen’s d=−0.52, Bonferroni-corrected pairwise comparisons,
Fig. 2). No significant effect of diagnostic group, and no interaction
were found (Supplementary Table 3).
There was a positive correlation between the percentage

change in Glx levels in the thalamus and the percentage change
in PANSS positive score between baseline and 9 months (r= .512,
P= 0.015, Pearson’s bivariate correlation): the greater the long-
itudinal reduction in thalamic Glx, the greater the improvement in
positive symptoms over the course of treatment (decrease in
PANSS positive score). This correlation remained significant when
one outlying value identified using Cook’s D was excluded (r
= .493, P= 0.023, Fig. 3). Secondary analyses found positive
correlations between the percentage change in Glx in the
thalamus and the percentage change in PANSS general (r= .446,
P= 0.037) and PANSS total (r= .501, P= 0.018) scores, but not the
PANSS negative score (r= -.053, P= 0.815, Fig. 3) or PSP score (r
= -.135, P= 0.550). Relationships remained significant when
partial correlations were conducted to control for time to follow-
up.
In contrast, there were no significant relationships between the

percentage change in glutamate in the thalamus and percentage
symptom change (Supplementary Table 4).
Repeated measures MANOVA analyses assessed metabolite

changes over time for N-acetyl-aspartate, creatine, myo-inositol,
and choline (Supplementary Table 5). There were no significant
main effects of group, time or interaction in remission versus non-
remission groups in the ACC or left thalamus, or in patients versus
healthy volunteers in the ACC. In the thalamus, there was a
significant interaction between group (patient vs healthy volun-
teer) and time (F(2,70)= 3.520, P= 0.010). Post-hoc tests did not
find significant effects when groups and timepoints were analysed
separately.

DISCUSSION
This study investigated the relationship between brain glutama-
tergic metabolites and the response to antipsychotic medication
over the first 9 months of treatment for psychosis. The main
finding was that Glx in the thalamus increased over time in Non-
Remitters, such that after 9 months Glx levels were higher in
patients who were not in remission than in those who were.
Furthermore, symptomatic improvement over the course of
treatment was associated with a longitudinal reduction in
thalamic Glx levels. These results extend our previous observations
over shorter periods of treatment8 to indicate that longer-term
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symptomatic response may be linked to the level of glutamatergic
metabolites.
In a recent longitudinal study over 4 weeks of antipsychotic

treatment (containing an overlapping sample of the participants
to the current study) we also found that glutamate levels
decreased over time in the thalamus, but there was no significant
relationship between the reduction over this timeframe and
symptomatic improvement.8 In this extended study, the treatment
period was 9 months, which suggests that longitudinal differences
in relation to symptomatic response may emerge after longer
periods of treatment. This 9 month period is comparable to the

time since presentation in an earlier cross-sectional study in first
episode psychosis, in which we also observed numerically but
non-significantly higher thalamic Glx in the Non-Remission
compared to Remission group.7

The results of the present study are broadly consistent with a
previous report in patients with schizophrenia showing that
higher social and occupational functioning scores 80 months after
diagnosis are associated with a greater degree of thalamic Glx
reduction over those 80 months.14 Together these findings
suggest that thalamic Glx levels may be more related to
symptomatic outcome after a period of several months, rather

Table 1. Subject demographics and clinical characteristics

Healthy Volunteers
n= 15

Total FEP Patient
Group n= 23

Non-Remission
n= 11

Remission
n= 12

Baseline

Age (years) 24.5 (4.5) 25.5 (5.1) 25.6 (5.3) 25.4 (5.2)

Male/Female 12/3 17/6 10/1 7/5

Education, years 14.5 (2.7) 11.5 (3.1)** 11.6 (2.3) 11.5 (3.7)

Currently employed Y/N 14/1 12/11** 4/7 8/4

Ethnicity (White/Black/Asian/Other) 8/3/2/2 8/8/2/5 5/3/1/2 3/5/1/3

Duration of psychosis (months) 13.3 (11.2) 17.0 (9.0) 9.9 (12.3)

Duration of treatment (days) 10 (9) 11 (11) 10 (7)

Antipsychotics: None/Amisulpride/Risperidone 4/18/1 2/9/0 2/9/1

CPZ Equivalent Dose 117.1 (77.2) 125.1 (78.0) 109.8 (79.2)

PANSS Positive 19.3 (4.7) 20.8 (5.4) 17.9 (3.6)

PANSS Negative 14.5 (5.4) 16.8 (6.3) 12.3 (3.6)***

PANSS General 34.4 (8.5) 36.4 (9.0) 32.6 (8.0)

PANSS Total 68.2 (15.9) 74.0 (17.5) 62.8 (12.6)

PSP 54.6 (10.4) 54.1 (8.5) 55.1 (12.2)

6 Weeks

Duration of treatment (days) 42.6 (14.4) 37.7 (14.9) 47.1 (13.0)

None/Amisulpride/Risperidone/Olanzapine/Quetiapine/Aripiprazole 1/16/1/1/2/2 1/8/0/1/1/0 0/8/1/0/1/2

CPZ Equivalent Dose 213.7 (109.1) 188.5 (89.9) 236.9 (123.5)

Adherence (% days on medication) 90.8 (22.8) 94.0 (14.9) 87.8 (28.7)

PANSS Positive 13.0 (5.3) 15.5 (5.8) 10.7 (3.5)*

PANSS Negative 13.2 (6.0) 16.7 (6.8) 9.9 (2.1)**

PANSS General 27.0 (8.5) 30.0 (9.2) 24.3 (7.2)

PANSS Total 53.2 (18.2) 62.3 (20.2) 44.9 (11.5)*

PSP 64.7 (16.2) 57.6 (12.9) 71.1 (16.8)*

Weeks between 1st and 2nd scan [Mean (SD Range)] 16 (28, 4–86) 7 (12, 4–63) 4 (0.5, 4–5) 10 (17, 4–63)

9 Months

Duration of treatment (days) 200.0 (155.2) 189.8 (140.0) 209.4 (173.6)

None/Amisulpride/Risperidone/Olanzapine/Quetiapine/Aripiprazole 8/6/1/5/1/2 4/2/0/4/1/0 4/4/1/1/0/2

CPZ Equivalent Dose 234.7 (86.1) 236.0 (64.9) 233.6 (104.8)

Adherence (% days on medication) 73.6 (30.8) 72.8 (30.7) 74.3 (32.3)

PANSS Positive 13.4 (6.0) 17.6 (5.3) 9.6 (3.4)***

PANSS Negative 11.3 (3.9) 13.1 (4.0) 9.6 (3.1)***

PANSS General 28.4 (7.1) 32.6 (6.0) 24.5 (5.8)***

PANSS Total 53.1 (14.4) 63.4 (11.8) 43.7 (9.2)***

PSP 56.5 (18.1) 48.8 (14.3) 63.6 (18.8)*

Months between 1st and 3rd scan [Mean (SD Range)] 8 (7, 2–21) 9 (6, 2–19) 8 (5, 2–17) 9 (6, 2–19)

Mean and (Standard Deviation) presented. Remission and Non-Remission groups were classified based on presentation at the 9 month timepoint
Significant differences between the Remission and Non-Remission group are denoted in the Remission group column
Significant differences between Healthy Volunteers and FEP patients are denoted by *P <0.05, **P < 0.01, ***P < 0.001 in the FEP patient column
FEP first episode psychosis, PANSS positive and negative syndrome scale, PSP personal and social performance scale, CPZ equivalent dose chlorpromazine
equivalent dose
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Table 2. 1H-MRS metabolite concentrations corrected for voxel cerebrospinal fluid (CSF) content, and 1H-MRS voxel % of white matter, grey matter
and CSF, at three timepoints

Healthy volunteers
n= 15

Total patient
group n= 23

Non-Remission
n= 11

Remission
n= 12

Baseline 1H-MRS Scan

Anterior cingulate cortex

Glx 20.76 (2.96) 19.99 (3.29) 19.85 (3.48) 20.12 (3.27)

Glu 14.04 (1.36) 14.11 (1.61) 13.87 (1.23) 14.33 (1.92)

NAA 12.24 (1.19) 11.97 (1.35) 11.98 (1.30) 11.97 (1.46)

Cho 2.77 (0.51) 2.80 (0.34) 2.83 (0.46) 2.76 (0.19)

mI 7.95 (1.62) 7.75 (1.28) 7.77 (1.25) 7.74 (1.37)

Cr 10.29 (1.24) 10.46 (1.17) 10.34 (1.29) 10.57 (1.10)

White matter 12.54 (0.04) 12.36 (0.04) 13.19 (0.04) 11.61 (0.03)

Grey matter 66.43 (0.06) 65.00 (0.04) 64.95 (0.05) 65.04 (0.04)

CSF 20.99 (0.04) 22.63 (0.05) 21.83 (0.05) 23.35 (0.05)

Left Thalamus

Glx 11.04 (2.53) 10.30 (2.10) 10.04 (1.62) 10.54 (2.52)

Glu 8.13 (1.01) 8.06 (1.33) 7.96 (0.61) 8.15 (1.78)

NAA 11.31 (1.29) 11.57 (0.72) 11.73 (0.84) 11.43 (0.61)

Cho 2.18 (0.29) 2.08 (0.18) 2.14 (0.17) 2.02 (0.18)

mI 4.21 (0.82) 4.08 (0.55) 4.16 (0.39) 4.01 (0.68)

Cr 7.37 (0.64) 7.53 (0.59) 7.48 (0.54) 7.57 (0.65)

White matter 73.94 (0.08) 77.09 (0.06) 79.19 (0.06) 75.17 (0.06)

Grey matter 25.67 (0.08) 22.51 (0.06) 20.24 (0.05) 24.57 (0.06)

CSF 00.37 (0.01) 00.40 (0.01) 00.56 (0.01) 00.25 (0.00)

6 weeks 1H-MRS Scan

Anterior cingulate cortex

Glx 19.70 (3.46) 20.34 (2.95) 20.02 (2.68) 20.63 (3.26)

Glu 13.18 (1.74) 14.13 (2.01) 14.07 (2.18) 14.18 (1.94)

NAA 12.43 (1.22) 12.43 (1.28) 12.36 (0.90) 12.49 (1.59)

Cho 2.73 (0.44) 2.90 (0.44) 2.97 (0.24) 2.83 (0.57)

mI 8.09 (1.41) 8.17 (1.42) 8.22 (1.16) 8.12 (1.67)

Cr 10.42 (1.06) 10.88 (1.27) 10.85 (0.72) 10.90 (1.65)

White matter 10.53 (0.03) 11.06 (0.02) 11.23 (0.02) 10.91 (0.03)

Grey matter 66.64 (0.04) 65.55 (0.05) 65.34 (0.04) 65.74 (0.05)

CSF 22.90 (0.05) 23.37 (0.05) 23.40 (0.05) 23.34 (0.06)

Left Thalamus

Glx 9.63 (2.61) 9.65 (1.77) 9.56 (1.61) 9.73 (1.98)

Glu 7.57 (1.79) 7.26 (1.07) 7.28 (0.90) 7.23 (1.24)

NAA 11.71 (0.69) 11.26 (0.71) 11.26 (0.70) 11.25 (0.76)

Cho 2.22 (0.23) 2.06 (0.17)* 2.10 (0.16) 2.02 (0.18)

mI 4.28 (0.64) 4.10 (0.78) 4.14 (0.97) 4.05 (0.61)

Cr 7.55 (0.68) 7.38 (0.48) 7.43 (0.39) 7.34 (0.56)

White matter 77.47 (0.09) 80.30 (0.05) 79.84 (0.05) 80.72 (0.05)

Grey matter 22.34 (0.09) 19.49 (0.05) 19.91 (0.05) 19.10 (0.05)

CSF 00.25 (0.00) 00.19 (0.00) 00.22 (0.00) 00.15 (0.00)

9 month 1H-MRS Scan

Anterior cingulate cortex

Glx 20.58 (3.32) 20.13 (2.26) 20.45 (2.60) 19.83 (1.97)

Glu 14.19 (2.43) 13.65 (2.03) 13.61 (1.93) 13.68 (2.19)

NAA 12.24 (1.23) 12.05 (1.21) 12.16 (1.21) 11.95 (1.26)

Cho 2.76 (0.35) 2.73 (0.29) 2.75 (0.38) 2.71 (0.19)

mI 7.47 (1.15) 7.88 (1.02) 8.13 (1.22) 7.65 (0.78)

Cr 10.34 (1.31) 10.33 (0.68) 10.26 (0.73) 10.40 (0.64)

White matter 10.43 (0.03) 12.98 (0.04) 13.35 (0.04) 12.64 (0.03)
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than the initial period of treatment. A recent study observed a
trend for an increase in thalamic Glx levels over 5 years in first
episode psychosis patients, although the relationship with
treatment response was not investigated.26 At 9 months, there
were no group differences in substance use or spectral quality.
However, there was a numerically higher percentage of cannabis
users in the non-remission group, with a higher frequency of use.
It is possible that cannabis use or other unknown external factors
may have contributed to the observed increase in thalamic Glx in
non-remitters.27

Thalamocortical dysconnectivity is thought to be a key
pathophysiological feature of schizophrenia,28 and may be

mediated by alterations in thalamic glutamatergic transmis-
sion.29,30 Human neuroimaging studies have demonstrated that
antipsychotic administration can modify thalamic activity and
metabolism,31–34 but there are fewer data on the role of the
thalamus and its cortical connectivity in mediating clinical
outcome, with some studies35–37 but not others34,38 suggesting
an association. This could be explored in future work combining
serial 1H-MRS glutamate and functional connectivity measure-
ments in relation to early and longer-term clinical outcomes.
Contrary to our expectations, we did not detect any significant

relationships between remission status and glutamatergic meta-
bolite levels in the ACC. This is inconsistent with most previous

Table 2 continued

Healthy volunteers
n= 15

Total patient
group n= 23

Non-Remission
n= 11

Remission
n= 12

Grey matter 66.93 (0.04) 64.58 (0.05) 63.61 (0.06) 65.45 (0.04)

CSF 22.61 (0.04) 22.42 (0.04) 23.02 (0.04) 21.88 (0.04)

Left Thalamus

Glx 10.14 (1.92) 10.60 (1.93) 11.46 (1.45) 9.75 (2.02)*

Glu 7.70 (1.43) 8.31 (1.24) 8.60 (0.89) 8.03 (1.51)

NAA 11.05 (0.96) 11.54 (1.46) 11.48 (1.71) 11.61 (1.26)

Cho 2.05 (0.39) 2.12 (0.36) 2.21 (0.45) 2.05 (0.24)

mI 4.17 (0.79) 4.42 (0.78) 4.55 (0.61) 4.32 (0.91)

Cr 7.23 (0.59) 7.60 (1.04) 7.70 (1.39) 7.50 (0.61)

White matter 77.80 (0.09) 76.26 (0.07) 75.75 (0.06) 76.72 (0.07)

Grey matter 21.83 (0.08) 23.42 (0.06) 23.94 (0.05) 22.95 (0.07)

CSF 00.37 (0.01) 00.30 (0.00) 00.28 (0.00) 00.31 (0.00)

Data are presented as mean (SD)
Significant group differences are represented by *P < 0.05
Glu Glutamate, NAA N-acetyl-aspartate, Cr creatine, mI myo-inositol, Cho choline

Fig. 1 Glx (left) and Glutamate (right) at Baseline, 6 weeks and 9 months, in Remission and Non-Remission groups in (a) anterior cingulate
cortex and (b) left thalamus *Represents higher thalamic Glx levels in the Non-Remission group compared to the Remission group at
9 months (P= 0.033). Glx and glutamate values are CSF-corrected, presented as mean & within-subjects standard deviation
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Fig. 3 Correlations between change in PANSS score (−100% indicates full symptomatic improvement, whereas 0% denotes no change in
symptoms) and change in thalamic Glx levels over 9 months (negative values indicate reduction in thalamic Glx levels, whereas positive values
indicate increase in thalamic Glx). a Significant positive correlation between the percentage change in Glx levels in the thalamus and the
percentage change in PANSS positive score (r= .493, P= 0.023), (b) PANSS total score (r= .501, P= 0.018) and (c) PANSS general score
(r= .446, P= 0.037), between baseline and 9 months. d No significant correlation for the percentage change in PANSS negative score

Fig. 2 Glx (left) and Glutamate (right) at Baseline, 6 weeks and 9 months, in First Episode Psychosis (FEP) patients and Healthy Volunteers in (a)
anterior cingulate cortex and (b) left thalamus
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reports linking antipsychotic non-response to elevated glutamate
in the ACC,6–10,12 although one other study did not detect
differences in ACC glutamate in relation to response.11 In our
recent study that involved a larger sample (n= 46) overlapping
with the present cohort,8 non-remission at 4 weeks was associated
with elevated ACC glutamate prior to treatment with amisulpride.
The lack of significant difference in the current smaller sample (n
= 23) may reflect limitations of sample size. In addition, compared
to our larger study,8 a greater proportion of participants in the
present study had received antipsychotics prior to baseline, which
may have affected ACC glutamate metabolite levels.13

In line with data from previous studies,5,8,21 we did not detect
significant differences in thalamic or ACC Glx or glutamate
concentrations between the total patient sample and healthy
volunteers. Although a recent meta-analysis of the literature
suggests that there may be differences between first episode
patients and healthy volunteers in glutamine levels in the
thalamus and ACC,5 the acquisition parameters we used at 3
Tesla did not allow reliable quantification of glutamine. While Glx
in the thalamus increased over time in Non-Remitters, this effect
did not reach significance for the glutamate signal alone. This may
relate to differences in the Glx versus glutamate measurement, or
could indicate that glutamine is contributing to this effect.
A strength of this study is the relatively long follow-up period of

9 months in comparison to most previous studies16,19,22,23,25,39

which, together with scanning early in treatment permitted
investigation of the relationships between brain glutamate and
short and longer-term outcome under antipsychotic treatment. A
further strength is sample homogeneity, through the inclusion of
participants in their first episode of psychosis who had received
minimal prior antipsychotic medication.
One limitation of the study was that the majority of participants

were not antipsychotic naïve at baseline and may have already
experienced initial symptomatic improvement. Even short-term
antipsychotic exposure may reduce glutamate levels8 and may
have reduced our ability to detect subsequent reductions. The
52% response rate in the present sample is slightly lower than that
reported in the literature in first episode psychosis (approximately
60%40–43), which may be accounted for by prior medication
exposure, or by the longer follow-up time period. Other limitations
include controlling for the potential effects of medication
adherence, which was estimated through self-report and clinical
notes. Although the findings remained significant when the
analysis was restricted to participants who reported being
medication adherent at least 75% of the time, inclusion of more
accurate measures of adherence, such as antipsychotic plasma
levels, would have been helpful. The majority of patients initially
received the same antipsychotic medication, amisulpride, which is
a relatively selective D2 dopamine receptor antagonist.44 How-
ever, subsequently there was more variation in the particular
antipsychotic medications used. Differences in the pharmacologi-
cal profile of antipsychotics could have differential effects on
glutamatergic neurotransmission,45 which may have increased
variability over the observation period. Nevertheless, at the
9 month timepoint, the Remission and Non-Remission groups
were taking a similar set of antipsychotic drugs, the levels of
medication adherence were comparable, and a similar proportion
of patients were no longer taking medication. The data also
showed a reduction in thalamic glutamate across all participants
between baseline and 6 weeks, which may reflect a methodolo-
gical factor impacting on the measurement. This indicates the
utility of including a healthy volunteer or other non-intervention
group for interpretation of longitudinal studies. Lastly, this study
used adapted Andreasen’s criteria for remission, consistent with
previous studies.7,40 Therefore our study did not account for
fluctuations in symptoms or remission status that may have
occurred over the 9 month period, which would require regular
symptom monitoring.

In summary, the findings of the present study extend the
literature linking ACC glutamate to antipsychotic response6–10 by
indicating that response to antipsychotic medication over the first
9 months of treatment may be related to longitudinal changes in
glutamatergic metabolites in the thalamus. The association
between elevated thalamic Glx levels and Non-Remission is
consistent with the notion that brain glutamate transmission is a
potential therapeutic target for novel treatments for psychosis.

METHODS
The study included participants recruited in two studies: OPTiMiSE
(Optimisation of Treatment and Management of Schizophrenia in Europe;
www.optimisetrial.eu; EudraCT-Number: 2010-020185-19; clinicaltrials.gov
identifier: NCT0124819540) (n= 34, using the London sample from the
OPTiMiSE study8), and TRFEP (The neurobiological determinants of
treatment response in psychosis46; reference number 12/EE/0220) (n= 6,
with an additional n= 3 taking part in both studies). Both studies were
granted ethical approval by the South London and Maudsley NHS Trust
Ethics Committee, and all participants provided written informed consent.
Patients were recruited from early intervention community teams and
wards. We aimed to recruit 24 participants to detect a change in Glx levels
with antipsychotic treatment, according to power calculations reported in
a recent meta-analysis.13 Of 43 patients who agreed to participate in the
study, a total of n= 23 patients completed all 3 scans (n= 14 from the
OPTiMiSE study, n= 6 from the TRFEP study, and n= 3 taking part in both
studies) (Supplementary Fig. 1). In the patient group, inclusion required
presentation with a first episode of psychosis within the past 2 years, aged
between 18–40, and a diagnosis of a psychotic disorder according to ICD
10 criteria or DSM-IV criteria. Inclusion required previous antipsychotic
exposure of <15 days (OPTiMiSE study), or no exposure to antipsychotic
medication within the past 6 weeks (TRFEP study). Exclusion criteria
included being unable to provide written informed consent, being
coercively treated or being under legal custody. Healthy volunteers (n=
36) were recruited through online advertisements, with n= 15 completing
all three MRI sessions. Healthy volunteers were 18–40 years old with no
history of psychiatric illness. All subjects had no history of head injury or
contraindications to MRI scanning.
In the patient sample, symptoms were assessed using the Positive and

Negative Syndrome Scale (PANSS),47 and functioning was assessed using
the Personal and Social Performance (PSP) scale at each MRI scan visit.
Medication adherence and illicit drug use was determined using clinical
notes and self-report of dates when medication was taken. Chlorproma-
zine Equivalent Doses were calculated.48 The primary clinical outcome
measure was remission at 9 months, based upon adapted Andreasen
criteria,49 consistent with our larger study,40 and previous cross-sectional
study in first episode psychosis.7

MRI scans were conducted at baseline and repeated after a mean of
6 weeks and 9 months. All data were acquired at 3-Tesla on a General
Electric Healthcare (Chicago, USA) HDxt MR system. The same sequences
were acquired at each time-point. Whole brain sagittal T1-weighted
images were acquired using a modified ADNI GO protocol (See http://adni.
loni.usc.edu/methods/documents/mri-protocols/) with an echo time (TE)
2.848ms; repetition time(TR) 6.984ms; inversion time 400ms; flip angle
11°, Field of view 260mm, slice thickness 1.2 mm, matrix size 256x256mm.
The structural images were reformatted to axial orientation for 1H-MRS
voxel positioning in the bilateral ACC and left thalamus. The centre of the
ACC voxel (20 x 20 x 20mm) was positioned 16mm superior to the
anterior portion of the genu of the corpus callosum on the midline sagittal
localiser, avoiding the corpus callosum. The voxel in the left thalamus (15 x
20 x 20mm) was also positioned from the axial image, using the coronal
and sagittal localisers to minimise cerebrospinal fluid (CSF) content in the
voxel (voxel placement and example spectra previously published8).
1H-MRS spectra were acquired using PRESS (Point RESolved Spectro-

scopy), at TE= 30msec; TR= 3000msec; 96 averages; bandwidth/sample
frequency=+/- 2500Hz; number of complex points = 4096. Data were
acquired using the standard GE PROBE (PROton Brain Examination)
sequence, which includes acquisition of unsuppressed water reference
spectra (16 averages). The target water line-widths after shimming were <
7Hz in the ACC and < 10Hz in the left thalamus. For follow-up scans,
radiographers referred to the baseline scan voxel position to reduce
variability in voxel placement.
Spectra were analyzed using LC Model version 6.3-0I50,51 using a

standard LC Model basis set acquired using PRESS at 3-Tesla and a TE of
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30msec containing 16 metabolites. Poorly fitted metabolite peaks
(Cramer–Rao lower variance bounds (CRLB) >20% as reported by LCModel)
were excluded from further analysis. All metabolite values are reported in
institutional units.
To correct metabolite concentration estimates for voxel CSF content, T1-

weighted images were segmented into grey matter, white matter and CSF
images using Statistical Parametric Mapping 8, version 6313 (SPM8;
Wellcome Department of Imaging Neurosciences, University College
London, UK). Voxel coordinates were obtained from spectra file headers
using General Electric’s spectroscopy processing tool SAGE and mapped
against the T1-weighted structural images using in-house software, to
calculate the percentage tissue content of the individual 1H-MRS voxels.
Metabolite values were then corrected using the following equation51:

Uncorrectedmetabolite´ wmþ 1:21´ gmþ 1:55´ csfð Þ= gmþ wmð Þ
gm ¼ greymatter

wm ¼ whitematter

csf ¼ cerebrospinal fluid

Statistical analyses were performed using SPSS version 23 (SPSS inc.
Chicago, IL, USA). For demographic and clinical data, between group
differences were assessed using Fisher’s Exact Test (2 tailed) and
independent samples Student’s t-test. Equal variances were assumed
unless Levene’s test was significant.
The main 1H-MRS metabolites of interest were Glx and glutamate,

corrected for voxel CSF content. Repeated measures ANOVA assessed the
effects of time, group and group*time on voxel Glx and glutamate levels. A
significant effect of time was followed up with Bonferroni-corrected
pairwise comparisons (to determine significant differences between
timepoints). A significant effect of group was followed up by one-way
ANOVA tests (to determine group differences at separate timepoints). A
significant interaction was followed up with one-way ANOVA tests, and
also a repeated measures ANOVA in the remission and in the non-
remission groups separately, with Bonferroni-corrected pairwise compar-
isons (to determine significant differences between timepoints in each
group seperately). The primary analysis compared the Remission and Non-
Remission patient groups. Subsequent analyses compared the healthy
volunteer group to the total patient group. Relationships between the
percentage change in PANSS score (minus minimum possible scores)52 or
PSP score, and the percentage change in Glx and glutamate over 9 months
were assessed using Pearson’s bivariate correlations (2 tailed). Outliers
were identified using Cook’s distance estimates, excluding values higher
than 4/n. Repeated measures MANOVA assessed metabolite changes over
time for other metabolites. The data that support the findings of this study
are available from the corresponding author upon reasonable request.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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