2,036 research outputs found

    Colouring random graphs and maximising local diversity

    Get PDF
    We study a variation of the graph colouring problem on random graphs of finite average connectivity. Given the number of colours, we aim to maximise the number of different colours at neighbouring vertices (i.e. one edge distance) of any vertex. Two efficient algorithms, belief propagation and Walksat are adapted to carry out this task. We present experimental results based on two types of random graphs for different system sizes and identify the critical value of the connectivity for the algorithms to find a perfect solution. The problem and the suggested algorithms have practical relevance since various applications, such as distributed storage, can be mapped onto this problem.Comment: 10 pages, 10 figure

    From one solution of a 3-satisfiability formula to a solution cluster: Frozen variables and entropy

    Full text link
    A solution to a 3-satisfiability (3-SAT) formula can be expanded into a cluster, all other solutions of which are reachable from this one through a sequence of single-spin flips. Some variables in the solution cluster are frozen to the same spin values by one of two different mechanisms: frozen-core formation and long-range frustrations. While frozen cores are identified by a local whitening algorithm, long-range frustrations are very difficult to trace, and they make an entropic belief-propagation (BP) algorithm fail to converge. For BP to reach a fixed point the spin values of a tiny fraction of variables (chosen according to the whitening algorithm) are externally fixed during the iteration. From the calculated entropy values, we infer that, for a large random 3-SAT formula with constraint density close to the satisfiability threshold, the solutions obtained by the survey-propagation or the walksat algorithm belong neither to the most dominating clusters of the formula nor to the most abundant clusters. This work indicates that a single solution cluster of a random 3-SAT formula may have further community structures.Comment: 13 pages, 6 figures. Final version as published in PR

    Behavior of heuristics and state space structure near SAT/UNSAT transition

    Full text link
    We study the behavior of ASAT, a heuristic for solving satisfiability problems by stochastic local search near the SAT/UNSAT transition. The heuristic is focused, i.e. only variables in unsatisfied clauses are updated in each step, and is significantly simpler, while similar to, walksat or Focused Metropolis Search. We show that ASAT solves instances as large as one million variables in linear time, on average, up to 4.21 clauses per variable for random 3SAT. For K higher than 3, ASAT appears to solve instances at the ``FRSB threshold'' in linear time, up to K=7.Comment: 12 pages, 6 figures, longer version available as MSc thesis of first author at http://biophys.physics.kth.se/docs/ardelius_thesis.pd

    Inadequate food intake at high temperatures is related to depressed mitochondrial respiratory capacity

    Get PDF
    Animals, especially ectotherms, are highly sensitive to the temperature of their surrounding environment. Extremely high temperature, for example, induces a decline of average performance of conspecifics within a population, but individual heterogeneity in the ability to cope with elevating temperatures has rarely been studied. In this study, we examined inter-individual variation in feeding ability and consequent growth rate of juvenile brown trout Salmo trutta acclimated to a high temperature (19°C), and investigated the relationship between these metrics of whole-animal performances and among-individual variation in mitochondrial respiration capacity. Food was provided ad libitum yet intake varied ten-fold amongst individuals, resulting in some fish losing weight whilst others continued to grow. Almost half of the variation in food intake was related to variability in mitochondrial capacity: low intake (and hence growth failure) was associated with high leak respiration rates within liver and muscle mitochondria, and a lower coupling of muscle mitochondria. These observations, combined with the inability of fish with low food consumption to increase their intake despite ad libitum food levels, suggest a possible insufficient capacity of the mitochondria for maintaining ATP homeostasis. Individual variation in thermal performance is likely to confer variation in the upper limit of an organism's thermal niche and in turn affect the structure of wild populations in warming environments

    Focused Local Search for Random 3-Satisfiability

    Full text link
    A local search algorithm solving an NP-complete optimisation problem can be viewed as a stochastic process moving in an 'energy landscape' towards eventually finding an optimal solution. For the random 3-satisfiability problem, the heuristic of focusing the local moves on the presently unsatisfiedclauses is known to be very effective: the time to solution has been observed to grow only linearly in the number of variables, for a given clauses-to-variables ratio α\alpha sufficiently far below the critical satisfiability threshold αc4.27\alpha_c \approx 4.27. We present numerical results on the behaviour of three focused local search algorithms for this problem, considering in particular the characteristics of a focused variant of the simple Metropolis dynamics. We estimate the optimal value for the ``temperature'' parameter η\eta for this algorithm, such that its linear-time regime extends as close to αc\alpha_c as possible. Similar parameter optimisation is performed also for the well-known WalkSAT algorithm and for the less studied, but very well performing Focused Record-to-Record Travel method. We observe that with an appropriate choice of parameters, the linear time regime for each of these algorithms seems to extend well into ratios α>4.2\alpha > 4.2 -- much further than has so far been generally assumed. We discuss the statistics of solution times for the algorithms, relate their performance to the process of ``whitening'', and present some conjectures on the shape of their computational phase diagrams.Comment: 20 pages, lots of figure

    Exponentially hard problems are sometimes polynomial, a large deviation analysis of search algorithms for the random Satisfiability problem, and its application to stop-and-restart resolutions

    Full text link
    A large deviation analysis of the solving complexity of random 3-Satisfiability instances slightly below threshold is presented. While finding a solution for such instances demands an exponential effort with high probability, we show that an exponentially small fraction of resolutions require a computation scaling linearly in the size of the instance only. This exponentially small probability of easy resolutions is analytically calculated, and the corresponding exponent shown to be smaller (in absolute value) than the growth exponent of the typical resolution time. Our study therefore gives some theoretical basis to heuristic stop-and-restart solving procedures, and suggests a natural cut-off (the size of the instance) for the restart.Comment: Revtex file, 4 figure

    An Optical and X-ray Examination of Two Radio Supernova Remnant Candidates in 30 Doradus

    Full text link
    The giant HII region 30 Doradus is known for its violent internal motions and bright diffuse X-ray emission, suggesting the existence of supernova remnants (SNRs), but no nonthermal radio emission has been detected. Recently, Lazendic et al. compared the H-alpha/H-beta and radio/H-alpha ratios and suggested two small radio sources to be nonthermal and thus SNR candidates; however, no optical or X-ray counterparts were detected. We have used high-resolution optical images and high-dispersion spectra to examine the morphological, spectral, and kinematic properties of these two SNR candidates, and still find no optical evidence supporting their identification as SNRs. We have also determined the X-ray luminosities of these SNR candidates, and find them 1-3 orders of magnitude lower than those commonly seen in young SNRs. High extinction can obscure optical and X-ray signatures of an SNR, but would prohibit the use of a high radio/H-alpha ratio to identify nonthermal radio emission. We suggest that the SNR candidate MCRX J053831.8-690620 is associated with a young star forming region; while the radio emission originates from the obscured star forming region, the observed optical emission is dominated by the foreground. We suggest that the SNR candidate MCRX J053838.8-690730 is associated with a dust/molecular cloud, which obscures some optical emission but not the radio emission.Comment: 13 pages, 2 figures, accepted for publication in the ApJ, Nov 10, 200

    Survey-propagation decimation through distributed local computations

    Full text link
    We discuss the implementation of two distributed solvers of the random K-SAT problem, based on some development of the recently introduced survey-propagation (SP) algorithm. The first solver, called the "SP diffusion algorithm", diffuses as dynamical information the maximum bias over the system, so that variable nodes can decide to freeze in a self-organized way, each variable making its decision on the basis of purely local information. The second solver, called the "SP reinforcement algorithm", makes use of time-dependent external forcing messages on each variable, which let the variables get completely polarized in the direction of a solution at the end of a single convergence. Both methods allow us to find a solution of the random 3-SAT problem in a range of parameters comparable with the best previously described serialized solvers. The simulated time of convergence towards a solution (if these solvers were implemented on a distributed device) grows as log(N).Comment: 18 pages, 10 figure

    A Random Matrix Model of Adiabatic Quantum Computing

    Get PDF
    We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of Random Matrix Theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances, i.e., those having a critical ratio of clauses to variables, the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to non-adiabatic Landau-Zener type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size.Comment: 9 pages, 7 figure

    The Phase Diagram of 1-in-3 Satisfiability Problem

    Get PDF
    We study the typical case properties of the 1-in-3 satisfiability problem, the boolean satisfaction problem where a clause is satisfied by exactly one literal, in an enlarged random ensemble parametrized by average connectivity and probability of negation of a variable in a clause. Random 1-in-3 Satisfiability and Exact 3-Cover are special cases of this ensemble. We interpolate between these cases from a region where satisfiability can be typically decided for all connectivities in polynomial time to a region where deciding satisfiability is hard, in some interval of connectivities. We derive several rigorous results in the first region, and develop the one-step--replica-symmetry-breaking cavity analysis in the second one. We discuss the prediction for the transition between the almost surely satisfiable and the almost surely unsatisfiable phase, and other structural properties of the phase diagram, in light of cavity method results.Comment: 30 pages, 12 figure
    corecore