1,198 research outputs found

    Engineering Entanglement: The Fast-Approach Phase Gate

    Full text link
    Optimal-control techniques and a fast-approach scheme are used to implement a collisional control phase gate in a model of cold atoms in an optical lattice, significantly reducing the gate time as compared to adiabatic evolution while maintaining high fidelity. New objective functionals are given for which optimal paths are obtained for evolution that yields a control-phase gate up to single-atom Rabi shifts. Furthermore, the fast-approach procedure is used to design a path to significantly increase the fidelity of non-adiabatic transport in a recent experiment. Also, the entanglement power of phase gates is quantified.Comment: 7 pages, 4 figures. Phys. Rev. A (in press

    On the nature of Coulomb corrections to the e^+e^- pair production in ultrarelativistic heavy-ion collisions

    Get PDF
    We manifest the origin of the wrong conclusion made by several groups of authors on the absence of Coulomb corrections to the cross section of the e^+e^- pair production in ultrarelativistic heavy-ion collisions. The source of the mistake is connected with an incorrect passage to the limit in the expression for the cross section. When this error is eliminated, the Coulomb corrections do not vanish and agree with the results obtained within the Weizs\"acker-Williams approximation.Comment: 7 pages, LaTe

    Incoherent matter-wave solitons

    Get PDF
    The dynamics of matter-wave solitons in Bose-Einstein condensates (BEC) is considerably affected by the presence of a surrounding thermal cloud and by condensate depletion during its evolution. We analyze these aspects of BEC soliton dynamics, using time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory. The condensate is initially prepared within a harmonic trap at finite temperature, and solitonic behavior is studied by subsequently propagating the TDHFB equations without confinement. Numerical results demonstrate the collapse of the BEC via collisional emission of atom pairs into the thermal cloud, resulting in splitting of the initial density into two solitonic structures with opposite momentum. Each one of these solitary matter waves is a mixture of condensed and noncondensed particles, constituting an analog of optical random-phase solitons.Comment: 4 pages, 2 figures, new TDHFB result

    Hot Spot model of Nucleon and Double Parton Scattering

    Full text link
    We calculate the rate of double parton scattering (DPS) in proton - proton collisions in the framework of the recently proposed hot spot model of the nucleon structure. The resulting rate, especially for the case of three hot spots, appears to be in tension with the current experimental data on DPS at the LHC.Comment: 12 pages 2 figures 1 tabl

    Nonlinear Dynamics in the Resonance Lineshape of NbN Superconducting Resonators

    Full text link
    In this work we report on unusual nonlinear dynamics measured in the resonance response of NbN superconducting microwave resonators. The nonlinear dynamics, occurring at relatively low input powers (2-4 orders of magnitude lower than Nb), and which include among others, jumps in the resonance lineshape, hysteresis loops changing direction and resonance frequency shift, are measured herein using varying input power, applied magnetic field, white noise and rapid frequency sweeps. Based on these measurement results, we consider a hypothesis according to which local heating of weak links forming at the boundaries of the NbN grains are responsible for the observed behavior, and we show that most of the experimental results are qualitatively consistent with such hypothesis.Comment: Updated version (of cond-mat/0504582), 16 figure

    Pattern Competition in the Photorefractive Semiconductors

    Full text link
    We analytically study the photorefractive Gunn effect in n-GaAs subjected to two external laser beams which form a moving interference pattern (MIP) in the semiconductor. When the intensity of the spatially independent part of the MIP, denoted by I0I_0, is small, the system has a periodic domain train (PDT), consistent with the results of linear stability analysis. When I0I_0 is large, the space-charge field induced by the MIP will compete with the PDT and result in complex dynamics, including driven chaos via quasiperiodic route

    Induced Coherence and Stable Soliton Spiraling

    Full text link
    We develop a theory of soliton spiraling in a bulk nonlinear medium and reveal a new physical mechanism: periodic power exchange via induced coherence, which can lead to stable spiraling and the formation of dynamical two-soliton states. Our theory not only explains earlier observations, but provides a number of predictions which are also verified experimentally. Finally, we show theoretically and experimentally that soliton spiraling can be controled by the degree of mutual initial coherence.Comment: 4 pages, 5 figure

    Coulomb corrections and multiple e+e- pair production in ultra-relativistic nuclear collisions

    Full text link
    We consider the problem of Coulomb corrections to the inclusive cross section. We show that these corrections in the limiting case of small charge number of one of the nuclei coincide with those to the exclusive cross section. Within our approach we also obtain the Coulomb corrections for the case of large charge numbers of both nuclei.Comment: 7 pages, REVTeX
    corecore