12 research outputs found
Lactoferrin prevents LPS-induced decrease of the iron exporter ferroportin in human monocytes/macrophages.
Iron balance is tightly linked to inflammation and it has been demonstrated that many proteins involved in cellular iron management are up- or down-regulated by inflammatory stimuli, ultimately leading to iron retention in the reticuloendothelial system. Ferroportin is a key player in maintenance of correct iron homeostasis, because it is the only known mammalian cellular iron exporter. In this work we show that incubation of THP-1 monocytes/macrophages with lactoferrin prevents the LPS-induced decrease of ferroportin by reducing secretion of IL-6. © 2014 Springer Science+Business Media New York.Iron balance is tightly linked to inflammation
and it has been demonstrated that many proteins
involved in cellular iron management are up- or downregulated
by inflammatory stimuli, ultimately leading
to iron retention in the reticuloendothelial system.
Ferroportin is a key player in maintenance of correct
iron homeostasis, because it is the only known
mammalian cellular iron exporter. In this work we
show that incubation of THP-1 monocytes/macrophages
with lactoferrin prevents the LPS-induced
decrease of ferroportin by reducing secretion of IL-6
Mechanism of the intracellular killing and modulation of antibiotic susceptibility of Listeria monocytogenes in THP-1 macrophages activated by gamma interferon.
Listeria monocytogenes, a facultative intracellular pathogen, readily enters cells and multiplies in the cytosol after escaping from phagosomal vacuoles. Macrophages exposed to gamma interferon, one of the main cellular host defenses against Listeria, become nonpermissive for bacterial growth while containing Listeria in the phagosomes. Using the human myelomonocytic cell line THP-1, we show that the combination of L-monomethyl arginine and catalase restores bacterial growth without affecting the phagosomal containment of Listeria. A previous report (B. Scorneaux, Y. Ouadrhiri, G. Anzalone, and P. M. Tulkens, Antimicrob. Agents Chemother. 40:1225-1230, 1996) showed that intracellular Listeria was almost equally sensitive to ampicillin, azithromycin, and sparfloxacin in control cells but became insensitive to ampicillin and more sensitive to azithromycin and sparfloxacin in gamma interferon-treated cells. We show here that these modulations of antibiotic activity are largely counteracted by L-monomethyl arginine and catalase. In parallel, we show that gamma interferon enhances the cellular accumulation of azithromycin and sparfloxacin, an effect which is not reversed by addition of L-monomethyl arginine and catalase and which therefore cannot account for the increased activity of these antibiotics in gamma interferon-treated cells. We conclude that (i) the control exerted by gamma interferon on intracellular multiplication of Listeria in THP-1 macrophages is dependent on the production of nitric oxide and hydrogen peroxide; (ii) intracellular Listeria may become insensitive to ampicillin in macrophages exposed to gamma interferon because the increase in reactive oxygen and nitrogen intermediates already controls bacterial growth; and (iii) azithromycin and still more sparfloxacin cooperate efficiently with gamma interferon, one of the main cellular host defenses in Listeria infection
Effect of recombinant human gamma interferon on intracellular activities of antibiotics against Listeria monocytogenes in the human macrophage cell line THP-1.
Listeria monocytogenes is a facultative intracellular pathogen which enters cells by endocytosis and reaches phagolysosomes from where it escapes and multiplies in the cytosol of untreated cells. Exposure of macrophages to gamma interferon (IFN-gamma) restricts L. monocytogenes to phagosomes and prevents its intracellular multiplication. We have tested whether IFN-gamma also modulates the susceptibility of L. monocytogenes to antibiotics. We selected drugs from three different classes displaying marked properties concerning their cellular accumulation and subcellular distribution, namely, ampicillin (not accumulated by cells but present in cytosol), azithromycin (largely accumulated by cells but mostly restricted to lysosomes), and sparfloxacin (accumulated to a fair extent but detected only in cytosol). We used a continuous line of myelomonocytic cells (THP-1 macrophages), which display specific surface receptors for IFN-gamma, and examined the activity of these antibiotics against L. monocytogenes Hly+ (virulent variant) and L. monocytogenes Hly- (a nonvirulent variant defective in hemolysin production). Untreated THP-1 and phorbol myristate acetate-differentiated THP-1 were permissive for infection and multiplication of intracellular L. monocytogenes Hly+ (virulent variant). All three antibiotics tested were bactericidal against this Listeria strain when added to an extracellular concentration of 10x their MIC. After preexposure of THP-1 to IFN-gamma, L. monocytogenes Hly+ was still phagocytosed but no longer grew intracellularly. The activity of ampicillin became almost undetectable (antagonistic effect), and that of azithromycin was unchanged (additive effect with that of IFN-gamma), whereas that of sparfloxacin was markedly enhanced (synergy). A similar behavior (lack of bacterial growth, associated with a loss of activity of ampicillin, an enhanced activity of sparfloxacin, and unchanged activity of azithromycin) was observed in cells infected with L. monocytogenes Hly-. This modulation of antibiotic activity, which we ascribe to the change of subcellular localization of L. monocytogenes caused by IFN-gamma or by the lack of virulence factor, could result from a change in bacterial responsiveness to antibiotics, a modification of the drug activity, or differences in drug bioavailabilities between cytosol and phagosomes
Cellular uptake, localization and activity of fluoroquinolones in uninfected and infected macrophages.
Pefloxacin, like other fluoroquinolones, accumulates in macrophages and several other types of nucleated cells (but not in erythrocytes). Upon fractionation of macrophage homogenates by isopycnic centrifugation in sucrose gradients, fluoroquinolones are not found associated with any specific cellular structure. We have compared the activities of pefloxacin and roxithromycin against intracellular Staphylococcus aureus in mouse J774 macrophages. Pefloxacin was significantly more active for equivalent intracellular drug concentrations (i.e. expressed by reference to the respective MICs of the drugs as determined in broth), suggesting differences in intracellular availability and/or capacity of the drugs to express their activity in the intracellular environment. The difference was enhanced by incubating the cells in acidic medium. We have also examined the cellular pharmacokinetics and intracellular distribution of pefloxacin in uninfected and Legionella pneumophila infected guinea pig macrophages. In contrast to uninfected cells from which pefloxacin was quickly released, macrophages infected with legionella retained approximately 20-30% of the accumulated pefloxacin after a 60-min wash-out. Cell fractionation studies indicated that the drug remaining in cells was associated with components of high buoyant density. These fractions also contained [3H] if cells had been incubated with [3H] labelled legionella (by in-vitro exposure to [3H]-thymidine, before phagocytosis). These results suggest that part of the intracellular pefloxacin becomes associated with legionella, or with legionella-containing cytoplasmic structures
Ester prodrugs of ampicillin tailored for intracellular accumulation
Seven new ester prodrugs of ampicillin with hydrolysis half-lives ranging from 65 to 308 min were synthesized. The cellular accumulation of two of them (in J774 mouse macrophages) and their activities against intracellular Staphylococcus aureus were determined in comparison with the pivaloyloxymethylester of ampicillin (pivampicillin) and ampicillin. The esters accumulated extensively and were more active than ampicillin in this in vitro system. (C) 1997 Elsevier Science Ltd