10 research outputs found

    Lactoferrin prevents LPS-induced decrease of the iron exporter ferroportin in human monocytes/macrophages.

    Get PDF
    Iron balance is tightly linked to inflammation and it has been demonstrated that many proteins involved in cellular iron management are up- or down-regulated by inflammatory stimuli, ultimately leading to iron retention in the reticuloendothelial system. Ferroportin is a key player in maintenance of correct iron homeostasis, because it is the only known mammalian cellular iron exporter. In this work we show that incubation of THP-1 monocytes/macrophages with lactoferrin prevents the LPS-induced decrease of ferroportin by reducing secretion of IL-6. © 2014 Springer Science+Business Media New York.Iron balance is tightly linked to inflammation and it has been demonstrated that many proteins involved in cellular iron management are up- or downregulated by inflammatory stimuli, ultimately leading to iron retention in the reticuloendothelial system. Ferroportin is a key player in maintenance of correct iron homeostasis, because it is the only known mammalian cellular iron exporter. In this work we show that incubation of THP-1 monocytes/macrophages with lactoferrin prevents the LPS-induced decrease of ferroportin by reducing secretion of IL-6

    Mechanism of the intracellular killing and modulation of antibiotic susceptibility of Listeria monocytogenes in THP-1 macrophages activated by gamma interferon.

    No full text
    Listeria monocytogenes, a facultative intracellular pathogen, readily enters cells and multiplies in the cytosol after escaping from phagosomal vacuoles. Macrophages exposed to gamma interferon, one of the main cellular host defenses against Listeria, become nonpermissive for bacterial growth while containing Listeria in the phagosomes. Using the human myelomonocytic cell line THP-1, we show that the combination of L-monomethyl arginine and catalase restores bacterial growth without affecting the phagosomal containment of Listeria. A previous report (B. Scorneaux, Y. Ouadrhiri, G. Anzalone, and P. M. Tulkens, Antimicrob. Agents Chemother. 40:1225-1230, 1996) showed that intracellular Listeria was almost equally sensitive to ampicillin, azithromycin, and sparfloxacin in control cells but became insensitive to ampicillin and more sensitive to azithromycin and sparfloxacin in gamma interferon-treated cells. We show here that these modulations of antibiotic activity are largely counteracted by L-monomethyl arginine and catalase. In parallel, we show that gamma interferon enhances the cellular accumulation of azithromycin and sparfloxacin, an effect which is not reversed by addition of L-monomethyl arginine and catalase and which therefore cannot account for the increased activity of these antibiotics in gamma interferon-treated cells. We conclude that (i) the control exerted by gamma interferon on intracellular multiplication of Listeria in THP-1 macrophages is dependent on the production of nitric oxide and hydrogen peroxide; (ii) intracellular Listeria may become insensitive to ampicillin in macrophages exposed to gamma interferon because the increase in reactive oxygen and nitrogen intermediates already controls bacterial growth; and (iii) azithromycin and still more sparfloxacin cooperate efficiently with gamma interferon, one of the main cellular host defenses in Listeria infection

    Cellular uptake, localization and activity of fluoroquinolones in uninfected and infected macrophages.

    No full text
    Pefloxacin, like other fluoroquinolones, accumulates in macrophages and several other types of nucleated cells (but not in erythrocytes). Upon fractionation of macrophage homogenates by isopycnic centrifugation in sucrose gradients, fluoroquinolones are not found associated with any specific cellular structure. We have compared the activities of pefloxacin and roxithromycin against intracellular Staphylococcus aureus in mouse J774 macrophages. Pefloxacin was significantly more active for equivalent intracellular drug concentrations (i.e. expressed by reference to the respective MICs of the drugs as determined in broth), suggesting differences in intracellular availability and/or capacity of the drugs to express their activity in the intracellular environment. The difference was enhanced by incubating the cells in acidic medium. We have also examined the cellular pharmacokinetics and intracellular distribution of pefloxacin in uninfected and Legionella pneumophila infected guinea pig macrophages. In contrast to uninfected cells from which pefloxacin was quickly released, macrophages infected with legionella retained approximately 20-30% of the accumulated pefloxacin after a 60-min wash-out. Cell fractionation studies indicated that the drug remaining in cells was associated with components of high buoyant density. These fractions also contained [3H] if cells had been incubated with [3H] labelled legionella (by in-vitro exposure to [3H]-thymidine, before phagocytosis). These results suggest that part of the intracellular pefloxacin becomes associated with legionella, or with legionella-containing cytoplasmic structures

    Ester prodrugs of ampicillin tailored for intracellular accumulation

    No full text
    Seven new ester prodrugs of ampicillin with hydrolysis half-lives ranging from 65 to 308 min were synthesized. The cellular accumulation of two of them (in J774 mouse macrophages) and their activities against intracellular Staphylococcus aureus were determined in comparison with the pivaloyloxymethylester of ampicillin (pivampicillin) and ampicillin. The esters accumulated extensively and were more active than ampicillin in this in vitro system. (C) 1997 Elsevier Science Ltd
    corecore