374 research outputs found
Adding low-dose antidepressants to interferon alpha treatment for chronic hepatitis C improved psychiatric tolerability in a patient with schizoaffective psychosis
Treatment of chronic hepatitis C with interferon alpha (IFN-alpha) is relatively contraindicated in patients with psychiatric disorders because of possible severe psychiatric side effects. We report on a case of a female patient with a chronic schizoaffective psychosis, who was treated for 3 months with 3 x 3 mio IE IFN-alpha s.c./week because of a chronic hepatitis C (genotype Ib). Psychosis was stable with flupentixol monotherapy. After 2 months, she developed a severe depressive syndrome which lead to suicidal ideation. Until this time, she was without any antidepressive medication. Depressive symptoms disappeared after interferon therapy was stopped. Under prophylactic treatment with low-dose trimipramine (50 mg) or nefazodone (200 mg/day) therapy with IFN-alpha 3 x 3 mio IE/week was re-established after several months and again 2 years later adding ribavirin 1200 mg/day, a virustaticum. In contrast to the symptoms during monotherapy with IFN-alpha, during the time of both combination treatments, no psychiatric side effects occurred. While for ribavirin antidepressant effects are not known, we suppose that antidepressants may in serotonergic or noradrenergic caused by IFN-alpha. prevent changes neurotransmission caused by IFN-alpha. Copyright (C) 2000 S. Karger AG, Basel
Phase transitions in soft-committee machines
Equilibrium statistical physics is applied to layered neural networks with
differentiable activation functions. A first analysis of off-line learning in
soft-committee machines with a finite number (K) of hidden units learning a
perfectly matching rule is performed. Our results are exact in the limit of
high training temperatures. For K=2 we find a second order phase transition
from unspecialized to specialized student configurations at a critical size P
of the training set, whereas for K > 2 the transition is first order. Monte
Carlo simulations indicate that our results are also valid for moderately low
temperatures qualitatively. The limit K to infinity can be performed
analytically, the transition occurs after presenting on the order of N K
examples. However, an unspecialized metastable state persists up to P= O (N
K^2).Comment: 8 pages, 4 figure
Quantum Hall effect in a p-type heterojunction with a lateral surface quantum dot superlattice
The quantization of Hall conductance in a p-type heterojunction with lateral
surface quantum dot superlattice is investigated. The topological properties of
the four-component hole wavefunction are studied both in r- and k-spaces. New
method of calculation of the Hall conductance in a 2D hole gas described by the
Luttinger Hamiltonian and affected by lateral periodic potential is proposed,
based on the investigation of four-component wavefunction singularities in
k-space. The deviations from the quantization rules for Hofstadter "butterfly"
for electrons are found, and the explanation of this effect is proposed. For
the case of strong periodic potential the mixing of magnetic subbands is taken
into account, and the exchange of the Chern numbers between magnetic subands is
discussed.Comment: 12 pages, 5 figures; reported at the 15th Int. Conf. on High Magnetic
Fields in Semicond. Phys. (Oxford, UK, 2002
Monitoring of tritium purity during long-term circulation in the KATRIN test experiment LOOPINO using laser Raman spectroscopy
The gas circulation loop LOOPINO has been set up and commissioned at Tritium
Laboratory Karlsruhe (TLK) to perform Raman measurements of circulating tritium
mixtures under conditions similar to the inner loop system of the neutrino-mass
experiment KATRIN, which is currently under construction. A custom-made
interface is used to connect the tritium containing measurement cell, located
inside a glove box, with the Raman setup standing on the outside. A tritium
sample (purity > 95%, 20 kPa total pressure) was circulated in LOOPINO for more
than three weeks with a total throughput of 770 g of tritium. Compositional
changes in the sample and the formation of tritiated and deuterated methanes
CT_(4-n)X_n (X=H,D; n=0,1) were observed. Both effects are caused by hydrogen
isotope exchange reactions and gas-wall interactions, due to tritium {\beta}
decay. A precision of 0.1% was achieved for the monitoring of the T_2
Q_1-branch, which fulfills the requirements for the KATRIN experiment and
demonstrates the feasibility of high-precision Raman measurements with tritium
inside a glove box
Quantum Hall Effect on the Hofstadter Butterfly
Motivated by recent experimental attempts to detect the Hofstadter butterfly,
we numerically calculate the Hall conductivity in a modulated two-dimensional
electron system with disorder in the quantum Hall regime. We identify the
critical energies where the states are extended for each of butterfly subbands,
and obtain the trajectory as a function of the disorder. Remarkably, we find
that when the modulation becomes anisotropic, the critical energy branches
accompanying a change of the Hall conductivity.Comment: 4 pages, 6 figure
Accurate reference gas mixtures containing tritiated molecules: Their production and raman‐based analysis
Highly accurate, quantitative analyses of mixtures of hydrogen isotopologues—both the stable species, H, D2, and HD, and the radioactive species, T, HT, and DT—are of great importance in fields as diverse as deuterium–tritium fusion, neutrino mass measurements using tritium β-decay, or for photonuclear experiments in which hydrogen–deuterium targets are used. In this publication we describe a production, handling, and analysis facility capable of fabricating well-defined gas samples, which may contain any of the stable and radioactive hydrogen isotopologues, with sub-percent accuracy for the relative species concentrations. The production is based on precise manometric gas mixing of H, D, and T. The heteronuclear isotopologues HD, HT, and DT are generated via controlled, in-line catalytic reaction or by β-induced self-equilibration, respectively. The analysis was carried out using an in-line intensity- and wavelength-calibrated Raman spectroscopy system. This allows for continuous monitoring of the composition of the circulating gas during the self-equilibration or catalytic evolution phases. During all procedures, effects, such as exchange reactions with wall materials, were considered with care. Together with measurement statistics, these and other systematic effects were included in the determination of composition uncertainties of the generated reference gas samples. Measurement and calibration accuracy at the level of 1% was achieved
Hall conductance of Bloch electrons in a magnetic field
We study the energy spectrum and the quantized Hall conductance of electrons
in a two-dimensional periodic potential with perpendicular magnetic field
WITHOUT neglecting the coupling of the Landau bands. Remarkably, even for weak
Landau band coupling significant changes in the Hall conductance compared to
the one-band approximation of Hofstadter's butterfly are found. The principal
deviations are the rearrangement of subbands and unexpected subband
contributions to the Hall conductance.Comment: to appear in PRB; Revtex, 9 pages, 5 postscript figures; figures with
better resolution may be obtained from http://www.chaos.gwdg.d
Bloch Electrons in a Magnetic Field - Why Does Chaos Send Electrons the Hard Way?
We find that a 2D periodic potential with different modulation amplitudes in
x- and y-direction and a perpendicular magnetic field may lead to a transition
to electron transport along the direction of stronger modulation and to
localization in the direction of weaker modulation. In the experimentally
accessible regime we relate this new quantum transport phenomenon to avoided
band crossing due to classical chaos.Comment: 4 pages, 3 figures, minor modifications, PRL to appea
- …