85 research outputs found

    Rectal gel application of Withania somnifera root extract expounds anti-inflammatory and muco-restorative activity in TNBS-induced Inflammatory Bowel Disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory Bowel Disease (IBD) is marked with chronic inflammation of intestinal epithelium driven by oxidative stress. Traditional treatments with plant extracts gained renewed interest due to their ability to ameliorate the multi factorial conditions like inflammation. We investigated the beneficial effects of <it>Withania somnifera </it>in Trinitro Benzyl Sulfonic Acid (TNBS) induced experimental IBD through a rectally applicable formulation.</p> <p>Methods</p> <p>The study included (i) preparation of gel formulation from aqueous <it>Withania somnifera </it>root extract (WSRE), (ii) biochemical assays to determine its performance potential, (iii) testing of formulation efficacy in TNBS-induced IBD rat model, and (iv) histo-patholgical studies to assess its healing and muco-regenerative effect in IBD-induced rats. For this purpose, concentration dependant antioxidant activity of the extracts were evaluated using biochemical assays like (a) inhibition of lipid peroxidation, (b) NO scavenging, (c) H<sub>2</sub>O<sub>2 </sub>scavenging, and (d) ferric reducing power assay.</p> <p>Results</p> <p>The extract, at 500 μg/ml, the highest concentration tested, showed 95.6% inhibition of lipid peroxidation, 14.8% NO scavenging, 81.79% H<sub>2</sub>O<sub>2 </sub>scavenging and a reducing capacity of 0.80. The results were comparable with standard antioxidants, ascorbic acid and curcumin. WSRE treatment positively scored on histopathological parameters like necrosis, edema, neutrophil infiltration. The post treatment intestinal features showed restoration at par with the healthy intestine. In view of these results, gel formulation containing an aqueous extract of <it>W. somnifera</it>, prepared for rectal application was tested for its anti-inflammatory activity in TNBS-induced rat models for IBD. Commercially available anti-inflammatory drug Mesalamine was used as the standard in this assay.</p> <p>Conclusions</p> <p>Dose of the rectal gel applied at 1000 mg of WSRE per kg rat weight showed significant muco-restorative efficacy in the IBD-induced rats, validated by histo-pathological studies.</p

    Mitochondrial targeted catalase suppresses invasive breast cancer in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment of invasive breast cancer has an alarmingly high rate of failure because effective targets have not been identified. One potential target is mitochondrial generated reactive oxygen species (ROS) because ROS production has been associated with changes in substrate metabolism and lower concentration of anti-oxidant enzymes in tumor and stromal cells and increased metastatic potential.</p> <p>Methods</p> <p>Transgenic mice expressing a human catalase gene (mCAT) were crossed with MMTV-PyMT transgenic mice that develop metastatic breast cancer. All mice (33 mCAT positive and 23 mCAT negative) were terminated at 110 days of age, when tumors were well advanced. Tumors were histologically assessed for invasiveness, proliferation and metastatic foci in the lungs. ROS levels and activation status of p38 MAPK were determined.</p> <p>Results</p> <p>PyMT mice expressing mCAT had a 12.5 per cent incidence of high histological grade primary tumor invasiveness compared to a 62.5 per cent incidence in PyMT mice without mCAT. The histological grade correlated with incidence of metastasis with 56 per cent of PyMT mice positive for mCAT showing evidence of pulmonary metastasis compared to 85.4 per cent of PyMT mice negative for mCAT with pulmonary metastasis (p ≤ 0.05). PyMT tumor cells expressing mCAT had lower ROS levels and were more resistant to hydrogen peroxide-induced oxidative stress than wild type tumor cells, suggesting that mCAT has the potential of quenching intracellular ROS and subsequent invasive behavior. The metastatic tumor burden in PyMT mice expressing mCAT was 0.1 mm<sup>2</sup>/cm<sup>2 </sup>of lung tissue compared with 1.3 mm<sup>2</sup>/cm<sup>2 </sup>of lung tissue in PyMT mice expressing the wild type allele (p ≤ 0.01), indicating that mCAT could play a role in mitigating metastatic tumor progression at a distant organ site. Expression of mCAT in the lungs increased resistance to hydrogen peroxide-induced oxidative stress that was associated with decreased activation of p38MAPK suggesting ROS signaling is dependent on p38MAPK for at least some of its downstream effects.</p> <p>Conclusion</p> <p>Targeting catalase within mitochondria of tumor cells and tumor stromal cells suppresses ROS-driven tumor progression and metastasis. Therefore, increasing the antioxidant capacity of the mitochondrial compartment could be a rational therapeutic approach for invasive breast cancer.</p> <p>Please see related commentary article: <url>http://www.biomedcentral.com/1741-7015/9/62</url></p

    Sporadic Colorectal Cancer Development Shows Rejuvenescence Regarding Epithelial Proliferation and Apoptosis

    Get PDF
    Background and Aims: Sporadic colorectal cancer (CRC) development is a sequential process showing age-dependency, uncontrolled epithelial proliferation and decreased apoptosis. During juvenile growth cellular proliferation and apoptosis are well balanced, which may be perturbed upon aging. Our aim was to correlate proliferative and apoptotic activities in aging human colonic epithelium and colorectal cancer. We also tested the underlying molecular biology concerning the proliferation- and apoptosis-regulating gene expression alterations. Materials and Methods: Colorectal biopsies from healthy children (n1 = 14), healthy adults (n2 = 10), adult adenomas (n3 = 10) and CRCs (n4 = 10) in adults were tested for Ki-67 immunohistochemistry and TUNEL apoptosis assay. Mitosis- and apoptosis-related gene expression was also studied in healthy children (n1 = 6), adult (n2 = 41) samples and in CRC (n3 = 34) in HGU133plus2.0 microarray platform. Measured alterations were confirmed with RT-PCR both on dependent and independent sample sets (n1=6, n2=6, n3 = 6). Results: Mitotic index (MI) was significantly higher (p,0.05) in intact juvenile (MI = 0.3360.06) and CRC samples (MI = 0.4260.10) compared to healthy adult samples (MI = 0.1560.06). In contrast, apoptotic index (AI) was decreased in children (0.1360.06) and significantly lower in cancer (0.0660.03) compared to healthy adult samples (0.1760.05). Eight proliferation- (e.g. MKI67, CCNE1) and 11 apoptosis-associated genes (e.g. TNFSF10, IFI6) had altered mRNA expression both in the course of normal aging and carcinogenesis, mainly inducing proliferation and reducing apoptosis compared to healthy adults. Eight proliferation-associated genes including CCND1, CDK1, CDK6 and 26 apoptosis-regulating genes (e.g. SOCS3) were differently expressed between juvenile and cancer groups mostly supporting the pronounced cell growth in CRC. Conclusion: Colorectal samples from children and CRC patients can be characterized by similarly increased proliferative and decreased apoptotic activities compared to healthy colonic samples from adults. Therefore, cell kinetic alterations during colorectal cancer development show uncontrolled rejuvenescence as opposed to the controlled cell growth in juvenile colonic epithelium

    Non-Opsonic Phagocytosis of Legionella pneumophila by Macrophages Is Mediated by Phosphatidylinositol 3-Kinase

    Get PDF
    Background: Legionella pneumophila, is an intracellular pathogen that causes Legionnaires ’ disease in humans, a potentially lethal pneumonia. L. pneumophila has the ability to enter and replicate in the host and is essential for pathogenesis. Methodology/Principal Findings: Phagocytosis was measured by cell invasion assays. Construction of PI3K mutant by PCR cloning and expression of dominant negative mutant was detected by Western blot. PI3K activity was measured by 32 P labeling and detection of phospholipids products by thin layer chromatography. Infection of macrophages with virulent L. pneumophila stimulated the formation of phosphatidylinositol 3-phosphate (PIP3), a phosphorylated lipid product of PI3K whereas two structurally distinct phosphatidylinositol 3 kinase (PI3K) inhibitors, wortmannin and LY294002, reduced L. pneumophila entry into macrophages in a dose-dependent fashion. Furthermore, PI3K activation led to Akt stimulation, a serine/threonine kinase, which was also inhibited by wortmannin and LY294002. In contrast, PI3K and protein kinase B (PKB/Akt) activities were lower in macrophages infected with an avirulent bacterial strain. Only virulent L. pneumophila increased lipid kinase activity present in immunoprecipitates of the p85a subunit of class I PI3K and tyrosine phosphorylated proteins. In addition, macrophages expressing a specific dominant negative mutant of PI3K reduced L. pneumophila entry into these cells. Conclusion/Significance: Entry of L. pneumophila is mediated by PI3K/Akt signaling pathway. These results suggest an important role for PI3K and Akt in the L. pneumophila infection process. They point to possible novel strategies fo

    Preliminary Evidence for Cell Membrane Amelioration in Children with Cystic Fibrosis by 5-MTHF and Vitamin B12 Supplementation: A Single Arm Trial

    Get PDF
    Cystic fibrosis (CF) is one of the most common fatal autosomal recessive disorders in the Caucasian population caused by mutations of gene for the cystic fibrosis transmembrane conductance regulator (CFTR). New experimental therapeutic strategies for CF propose a diet supplementation to affect the plasma membrane fluidity and to modulate amplified inflammatory response. The objective of this study was to evaluate the efficacy of 5-methyltetrahydrofolate (5-MTHF) and vitamin B12 supplementation for ameliorating cell plasma membrane features in pediatric patients with cystic fibrosis.A single arm trial was conducted from April 2004 to March 2006 in an Italian CF care centre. 31 children with CF aged from 3 to 8 years old were enrolled. Exclusion criteria were diabetes, chronic infections of the airways and regular antibiotics intake. Children with CF were supplemented for 24 weeks with 5-methyltetrahydrofolate (5-MTHF, 7.5 mg /day) and vitamin B12 (0.5 mg/day). Red blood cells (RBCs) were used to investigate plasma membrane, since RBCs share lipid, protein composition and organization with other cell types. We evaluated RBCs membrane lipid composition, membrane protein oxidative damage, cation content, cation transport pathways, plasma and RBCs folate levels and plasma homocysteine levels at baseline and after 24 weeks of 5-MTHF and vitamin B12 supplementation. In CF children, 5-MTHF and vitamin B12 supplementation (i) increased plasma and RBC folate levels; (ii) decreased plasma homocysteine levels; (iii) modified RBC membrane phospholipid fatty acid composition; (iv) increased RBC K(+) content; (v) reduced RBC membrane oxidative damage and HSP70 membrane association.5-MTHF and vitamin B12 supplementation might ameliorate RBC membrane features of children with CF.ClinicalTrials.gov NCT00730509

    Expression and prognostic relevance of activated extracellular-regulated kinases (ERK1/2) in breast cancer

    Get PDF
    Extracellular-regulated kinases (ERK1, ERK2) play important roles in the malignant behaviour of breast cancer cells in vitro. In our present study, 148 clinical breast cancer samples (120 cases with follow-up data) were studied for the expression of ERK1, ERK2 and their phosphorylated forms p-ERK1 and p-ERK2 by immunoblotting, and p-ERK1/2 expression in corresponding paraffin sections was analysed by immunohistochemistry. The results were correlated with established clinical and histological prognostic parameters, follow-up data and expression of seven cell-cycle regulatory proteins as well as MMP1, MMP9, PAI-1 and AP-1 transcription factors, which had been analysed before. High p-ERK1 expression as determined by immunoblots correlated significantly with a low frequency of recurrences and infrequent fatal outcome (P=0.007 and 0.008) and was an independent indicator of long relapse-free and overall survival in multivariate analysis. By immunohistochemistry, strong p-ERK staining in tumour cells was associated with early stages (P=0.020), negative nodal status (P=0.003) and long recurrence-free survival (P=0.017). In contrast, expression of the unphosphorylated kinases ERK1 and ERK2 was not associated with clinical and histological prognostic parameters, except a positive correlation with oestrogen receptor status. Comparison with the expression of formerly analysed cell-cycle- and invasion-associated proteins corroborates our conclusion that activation of ERK1 and ERK2 is not associated with enhanced proliferation and invasion of mammary carcinomas

    Tyrosine kinase signalling in breast cancer: Epidermal growth factor receptor and c-Src interactions in breast cancer

    Get PDF
    Both the non-receptor tyrosine kinase, c-Src, and members of the epidermal growth factor (EGF) receptor family are overexpressed in high percentages of human breast cancers. Because these molecules are plasma membrane-associated and involved in mitogenesis, it has been speculated that they function in concert with one another to promote breast cancer development and progression. Evidence to date supports a model wherein c-Src potentiates the survival, proliferation and tumorigenesis of EGF receptor family members, in part by associating with them. Phosphorylation of the EGF receptor by c-SRC is also critical for mitogenic signaling initiated by the EGF receptor itself, as well as by several G-protein coupled receptors (GPCRs), a cytokine receptor, and the estrogen receptor. Thus, c-Src appears to have pleiotropic effects on cancer cells by modulating the action of multiple growth-promoting receptors

    p21-activated kinase signaling in breast cancer

    Get PDF
    The p21-activated kinases signal through a number of cellular pathways fundamental to growth, differentiation and apoptosis. A wealth of information has accumulated at an impressive pace in the recent past, both with regard to previously identified targets for p21-activated kinases that regulate the actin cytoskeleton and cellular stress pathways and with regard to newly identified targets and their role in cancer. Emerging data also provide new clues towards a previously unappreciated link between these various cellular processes. The present review attempts to provide a quick tutorial to the reader about the evolving significance of p21-activated kinases and small GTPases in breast cancer, using information from mouse models, tissue culture studies, and human materials
    corecore