1,932 research outputs found
Ballistic heat transport of quantum spin excitations as seen in SrCuO2
Fundamental conservation laws predict ballistic, i.e., dissipationless
transport behaviour in one-dimensional quantum magnets. Experimental evidence,
however, for such anomalous transport has been lacking ever since. Here we
provide experimental evidence for ballistic heat transport in a S=1/2
Heisenberg chain. In particular, we investigate high purity samples of the
chain cuprate SrCuO2 and observe a huge magnetic heat conductivity
. An extremely large spinon mean free path of more than a
micrometer demonstrates that is only limited by extrinsic
scattering processes which is a clear signature of ballistic transport in the
underlying spin model
Amorphous ferromagnetism and re-entrant magnetic glassiness in SmMoO: new insights into the electronic phase diagram of pyrochlore molybdates
We discuss the magnetic properties of a SmMoO single
crystal as investigated by means of different experimental techniques. In the
literature, a conventional itinerant ferromagnetic state is reported for the
Mo sublattice below K. However, our results of dc
magnetometry, muon spin spectroscopy (SR) and high-harmonics magnetic
ac susceptibility unambiguously evidence highly disordered conditions in this
phase, in spite of the crystalline and chemical order. This disordered magnetic
state shares several common features with amorphous ferromagnetic alloys. This
scenario for SmMoO is supported by the anomalously high
values of the critical exponents, as mainly deduced by a scaling analysis of
our dc magnetization data and confirmed by the other techniques. Moreover,
SR detects a significant static magnetic disorder at the microscopic
scale. At the same time, the critical divergence of the third-harmonic
component of the ac magnetic susceptibility around K leads to
additional evidence towards the glassy nature of this magnetic phase. Finally,
the longitudinal relaxation of spin polarization (also supported by
results of ac susceptibility) evidences re-entrant glassy features similar to
amorphous ferromagnets.Comment: 15 pages, 13 figure
Existence of conformal metrics with constant -curvature
Given a compact four dimensional manifold, we prove existence of conformal
metrics with constant -curvature under generic assumptions. The problem
amounts to solving a fourth-order nonlinear elliptic equation with variational
structure. Since the corresponding Euler functional is in general unbounded
from above and from below, we employ topological methods and minimax schemes,
jointly with a compactness result by the second author.Comment: 36 pages, revised version. To appear in Annals of Mathematic
Spin Gap in the Single Spin-1/2 Chain Cuprate SrCaCuO
We report Cu nuclear magnetic resonance and muon spin rotation
measurements on the S=1/2 antiferromagnetic Heisenberg spin chain compound
SrCaCuO. An exponentially decreasing spin-lattice
relaxation rate 1/T indicates the opening of a spin gap. This behavior is
very similar to what has been observed for the cognate zigzag spin chain
compound SrCaCuO, and confirms that the occurrence of a
spin gap upon Ca doping is independent of the interchain exchange coupling
. Our results therefore generally prove the appearance of a spin gap in an
antiferromagnetic Heisenberg spin chain induced by a local bond disorder of the
intrachain exchange coupling . A low temperature upturn of 1/T evidences
growing magnetic correlations. However, zero field muon spin rotation
measurements down to 1.5 K confirm the absence of magnetic order in this
compound which is most likely suppressed by the opening of the spin gap.Comment: 5 pages, 4 figure
The potential role of T-cells and their interaction with antigen-presenting cells in mediating immunosuppression following trauma-hemorrhage
Objective: Trauma-hemorrhage results in depressed immune responses of antigen-presenting cells (APCs) and T-cells. Recent studies suggest a key role of depressed T-cell derived interferon (IFN)-g in this complex immune cell interaction. The aim of this study was to elucidate further the underlying mechanisms responsible for dysfunctional T-cells and their interaction with APCs following trauma-hemorrhage.
Design: Adult C3H/HeN male mice were subjected to trauma-hemorrhage (3-cm midline laparotomy) followed by hemorrhage (blood pressure of 35�5mmHg for 90 min and resuscitation) or sham operation. At 24 h thereafter, spleens were harvested and T-cells (by Microbeads) and APCs (via adherence) were Isolated. Co-cultures of T-cells and APCs were established for 48 h and stimulated with concanavalin A and lipopolysaccharide. T-Cell specific cytokines known to affect APC function (i.e. interleukin(IL)-2, IL-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF)) were measured in culture supernatants by Multiplex assay. The expression of MHC class II as well as co-stimulatory surface molecules on T-cells and APCs was determined by flow cytometry.
Results: The release of IL-4 and GM-CSF by T-cells was suppressed following trauma-hemorrhage, irrespective of whether sham or trauma-hemorrhage APCs were present. Antigen-presenting cells from animals subjected to trauma-hemorrhage did not affect T-cell derived cytokine release by sham T-cells. In contrast, T-cells from traumahemorrhage animals depressed MHC class II expression of CD11c(þ) cells, irrespective of whether APCs underwent sham or trauma-hemorrhage procedure. Surprisingly, co-stimulatory molecules on APCs (CD80, CD86) were not affected by trauma-hemorrhage.
Conclusions: These results suggest that beside IFN-g other T-cell derived cytokines contribute to immunosuppression following trauma-hemorrhage causing diminished MHC II expression on APCs. Thus, T-cells appear to play an important role in this interaction at the time-point examined. Therapeutic approaches should aim at maintenance of T-cell function and their interaction with APCs to prevent extended immunosuppression following trauma-hemorrhage
The thermal conductivity of alternating spin chains
We study a class of integrable alternating (S1,S2) quantum spin chains with
critical ground state properties. Our main result is the description of the
thermal Drude weight of the one-dimensional alternating spin chain as a
function of temperature. We have identified the thermal current of the model
with alternating spins as one of the conserved currents underlying the
integrability. This allows for the derivation of a finite set of non-linear
integral equations for the thermal conductivity. Numerical solutions to the
integral equations are presented for specific cases of the spins S1 and S2. In
the low-temperature limit a universal picture evolves where the thermal Drude
weight is proportional to temperature T and central charge c.Comment: 15 pages, 1 figur
How realistic are air quality hindcasts driven by forcings from climate model simulations?
Predicting how European air quality could evolve over the next decades in the context of changing climate requires the use of climate models to produce results that can be averaged in a climatologically and statistically sound manner. This is a very different approach from the one that is generally used for air quality hindcasts for the present period; analysed meteorological fields are used to represent specifically each date and hour. Differences arise both from the fact that a climate model run results in a pure model output, with no influence from observations (which are useful to correct for a range of errors), and that in a "climate" set-up, simulations on a given day, month or even season cannot be related to any specific period of time (but can just be interpreted in a climatological sense). Hence, although an air quality model can be thoroughly validated in a "realistic" set-up using analysed meteorological fields, the question remains of how far its outputs can be interpreted in a "climate" set-up. For this purpose, we focus on Europe and on the current decade using three 5-yr simulations performed with the multiscale chemistry-transport model MOCAGE and use meteorological forcings either from operational meteorological analyses or from climate simulations. We investigate how statistical skill indicators compare in the different simulations, discriminating also the effects of meteorology on atmospheric fields (winds, temperature, humidity, pressure, etc.) and on the dependent emissions and deposition processes (volatile organic compound emissions, deposition velocities, etc.). Our results show in particular how differing boundary layer heights and deposition velocities affect horizontal and vertical distributions of species. When the model is driven by operational analyses, the simulation accurately reproduces the observed values of O<sub>3</sub>, NO<sub>x</sub>, SO<sub>2</sub> and, with some bias that can be explained by the set-up, PM<sub>10</sub>. We study how the simulations driven by climate forcings differ, both due to the realism of the forcings (lack of data assimilated and lower resolution) and due to the lack of representation of the actual chronology of events. We conclude that the indicators such as mean bias, mean normalized bias, RMSE and deviation standards can be used to interpret the results with some confidence as well as the health-related indicators such as the number of days of exceedance of regulatory thresholds. These metrics are thus considered to be suitable for the interpretation of simulations of the future evolution of European air quality
Coarctation of the aorta: pre and postoperative evaluation with MRI and MR angiography; correlation with echocardiography and surgery
Aims: To compare MRI and MRA with Doppler-echocardiography (DE) in native and postoperative aortic coarctation, define the best MR protocol for its evaluation, compare MR with surgical findings in native coarctation. Materials and methods: 136 MR studies were performed in 121 patients divided in two groups: Group I, 55 preoperative; group II, 81 postoperative. In group I, all had DE and surgery was performed in 35 cases. In group II, DE was available for comparison in 71 cases. MR study comprised: spin-echo, cine, velocity-encoded cine (VEC) sequences and 3D contrast-enhanced MRA. Results: In group I, diagnosis of coarctation was made by DE in 33 cases and suspicion of coarctation and/or aortic arch hypoplasia in 18 cases. Aortic arch was not well demonstrated in 3 cases and DE missed one case. There was a close correlation between VEC MRI and Doppler gradient estimates across the coarctation, between MRI aortic arch diameters and surgery but a poor correlation in isthmic measurements. In group II, DE detected a normal isthmic region in 31 out of 35 cases. Postoperative anomalies (recoarctation, aortic arch hypoplasia, kinking, pseudoaneurysm) were not demonstrated with DE in 50% of cases. Conclusions: MRI is superior to DE for pre and post-treatment evaluation of aortic coarctation. An optimal MR protocol is proposed. Internal measurement of the narrowing does not correspond to the external aspect of the surgical narrowin
Determinantal Characterization of Canonical Curves and Combinatorial Theta Identities
We characterize genus g canonical curves by the vanishing of combinatorial
products of g+1 determinants of Brill-Noether matrices. This also implies the
characterization of canonical curves in terms of (g-2)(g-3)/2 theta identities.
A remarkable mechanism, based on a basis of H^0(K_C) expressed in terms of
Szego kernels, reduces such identities to a simple rank condition for matrices
whose entries are logarithmic derivatives of theta functions. Such a basis,
together with the Fay trisecant identity, also leads to the solution of the
question of expressing the determinant of Brill-Noether matrices in terms of
theta functions, without using the problematic Klein-Fay section sigma.Comment: 35 pages. New results, presentation improved, clarifications added.
Accepted for publication in Math. An
- …
