2,512 research outputs found

    Rotational Dynamics of Organic Cations in CH3NH3PbI3 Perovskite

    Full text link
    Methylammonium lead iodide (CH3NH3PbI3) based solar cells have shown impressive power conversion efficiencies of above 20%. However, the microscopic mechanism of the high photovoltaic performance is yet to be fully understood. Particularly, the dynamics of CH3NH3+ cations and their impact on relevant processes such as charge recombination and exciton dissociation are still poorly understood. Here, using elastic and quasi-elastic neutron scattering techniques and group theoretical analysis, we studied rotational modes of the CH3NH3+ cation in CH3NH3PbI3. Our results show that, in the cubic (T > 327K) and tetragonal (165K < T < 327K) phases, the CH3NH3+ ions exhibit four-fold rotational symmetry of the C-N axis (C4) along with three-fold rotation around the C-N axis (C3), while in orthorhombic phase (T < 165K) only C3 rotation is present. Around room temperature, the characteristic relaxation times for the C4 rotation is found to be ps while for the C3 rotation ps. The -dependent rotational relaxation times were fitted with Arrhenius equations to obtain activation energies. Our data show a close correlation between the C4 rotational mode and the temperature dependent dielectric permittivity. Our findings on the rotational dynamics of CH3NH3+ and the associated dipole have important implications on understanding the low exciton binding energy and slow charge recombination rate in CH3NH3PbI3 which are directly relevant for the high solar cell performance

    Flux melting in BSCCO: Incorporating both electromagnetic and Josephson couplings

    Full text link
    Multilevel Monte Carlo simulations of a BSCCO system are carried out including both Josephson as well as electromagnetic couplings for a range of anisotropies. A first order melting transition of the flux lattice is seen on increasing the temperature and/or the magnetic field. The phase diagram for BSCCO is obtained for different values of the anisotropy parameter γ\gamma. The best fit to the experimental results of D. Majer {\it et al.} [Phys. Rev. Lett. {\bf 75}, 1166 (1995)] is obtained for γ250\gamma\approx 250 provided one assumes a temperature dependence λ2(0)/λ2(T)=1t\lambda^2(0)/\lambda^2(T)=1-t of the penetration depth with t=T/Tct=T/T_c. Assuming a dependence λ2(0)/λ2(T)=1t2\lambda^2(0)/\lambda^2(T)=1-t^2 the best fit is obtained for γ450 \gamma\approx 450. For finite anisotropy the data is shown to collapse on a straight line when plotted in dimensionless units which shows that the melting transition can be satisfied with a single Lindemann parameter whose value is about 0.3. A different scaling applies to the γ=\gamma=\infty case. The energy jump is measured across the transition and for large values of γ\gamma it is found to increase with increasing anisotropy and to decrease with increasing magnetic field. For infinite anisotropy we see a 2D behavior of flux droplets with a transition taking place at a temperature independent of the magnetic field. We also show that for smaller values of anisotropy it is reasonable to replace the electromagnetic coupling with an in-plane interaction represented by a Bessel function of the second kind (K0K_0), thus justifying our claim in a previous paper.Comment: 12 figures, revtex

    Assessment of genetic variability and character association for grain yield and its component traits in bread wheat (Triticum aestivum L.)

    Get PDF
    A study was conducted for estimating genetic variability and characters association for eleven yield components using 169 genotypes (13 parents, 78 F1 and 78 F2) of bread wheat through half-diallel mating design during rabi season 2012-13 and 2013-14. The genetic variability, heritability in broad sense, genetic advance, correlation coefficients and path analysis were carried out for the assessment of genotypes through eleven yield component traits namely; days to 50% flowering, days to maturity, plant height, spike length, number of effective tillers per plant, number of grains per spikelet, number of grains per spike, 1000-grain weight, biological yield per plant, harvest index and grain yield per plant. Analysis of variance showed significant differences (at1% level of significance) for all the traits under study in both the generations (F1 and F2). The phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) were high for plant height followed by number of effective tillers per plant, biological yield per plant, grain yield per plant, while high heritability coupled with high genetic advance were recorded for plant height and spike length in both F1 and F2 generations, respectively. Grain yield per plant was positively and significantly associated with a number of effective tillers per plant, spike length, number of grains per spike, 1000-grain weight, biological yield per plant and harvest index while significantly but negatively associated with plant height. Path analysis revealed that the traits namely biological yield per plant, number of effective tillers per plant, number of grains per spike, plant height and harvest index exhibited positive direct effects on grain yield at both phenotypic and genotypic level in both generation (F1 and F2). These results, thereby suggests that yield improvement in breads wheats could be possible by emphasizing these traits while making selections in early generations

    String Cosmology in Anisotropic Bianchi-II Space-time

    Full text link
    The present study deals with a spatially homogeneous and anisotropic Bianchi-II cosmological model representing massive strings. The energy-momentum tensor, as formulated by Letelier (1983), has been used to construct a massive string cosmological model for which the expansion scalar is proportional to one of the components of shear tensor. The Einstein's field equations have been solved by applying a variation law for generalized Hubble's parameter that yields a constant value of deceleration parameter in Bianchi-II space-time. A comparative study of accelerating and decelerating modes of the evolution of universe has been carried out in the presence of string scenario. The study reveals that massive strings dominate the early Universe. The strings eventually disappear from the Universe for sufficiently large times, which is in agreement with the current astronomical observations.Comment: 11 pages, 6 figures (To appear in Mod. Phys. Lett. A) In this version, the cosmic string has been directed along z-direction and the resultant field equations have been solved exactl

    Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and protein concentration in Indian wheat cultivars

    Get PDF
    © 2020 The Authors Nitrogen (N) fertilizer represents a significant cost for the grower and may also have environmental impacts through nitrate leaching and N2O (a greenhouse gas) emissions associated with denitrification. The objectives of this study were to quantify the genetic variability in N partitioning and N remobilization in Indian spring wheat cultivars and identify traits for improved grain yield and grain protein content for application in breeding N-efficient cultivars. Twenty-eight bread wheat cultivars and two durum wheat cultivars were tested in field experiments in two years in Maharashtra, India. Growth analysis was conducted at anthesis and harvest to assess above-ground dry matter (DM) and dry matter and N partitioning. Flag-leaf photosynthesis rate (Amax), flag-leaf senescence rate and canopy normalized difference vegetation index (NDVI) were also assessed. Significant N × genotype level interaction was observed for grain yield and N-use efficiency. There was a positive linear association between post-anthesis flag-leaf Amax and grain yield amongst the 30 genotypes under high N (HN) conditions. Flag-leaf Amax was positively associated with N uptake at anthesis (AGNA). Under both HN and low N (LN) conditions, higher N uptake at anthesis was associated with delayed onset of flag-leaf senescence and higher grain yield. Under N limitation, there was a genetic negative correlation between grain yield and grain protein concentration. Deviation from this negative relationship (grain protein deviation or GPD) was related to genotypic differences in post-anthesis N uptake. It is concluded that N uptake at anthesis was an important determinant of flag-leaf photosynthesis rate and grain yield under high N conditions; while post-anthesis N uptake was an important determinant of GPD of wheat grown under low to moderate N conditions in India

    Practical long-distance quantum key distribution system using decoy levels

    Get PDF
    Quantum key distribution (QKD) has the potential for widespread real-world applications. To date no secure long-distance experiment has demonstrated the truly practical operation needed to move QKD from the laboratory to the real world due largely to limitations in synchronization and poor detector performance. Here we report results obtained using a fully automated, robust QKD system based on the Bennett Brassard 1984 protocol (BB84) with low-noise superconducting nanowire single-photon detectors (SNSPDs) and decoy levels. Secret key is produced with unconditional security over a record 144.3 km of optical fibre, an increase of more than a factor of five compared to the previous record for unconditionally secure key generation in a practical QKD system.Comment: 9 page
    corecore