2,518 research outputs found
Rotational Dynamics of Organic Cations in CH3NH3PbI3 Perovskite
Methylammonium lead iodide (CH3NH3PbI3) based solar cells have shown
impressive power conversion efficiencies of above 20%. However, the microscopic
mechanism of the high photovoltaic performance is yet to be fully understood.
Particularly, the dynamics of CH3NH3+ cations and their impact on relevant
processes such as charge recombination and exciton dissociation are still
poorly understood. Here, using elastic and quasi-elastic neutron scattering
techniques and group theoretical analysis, we studied rotational modes of the
CH3NH3+ cation in CH3NH3PbI3. Our results show that, in the cubic (T > 327K)
and tetragonal (165K < T < 327K) phases, the CH3NH3+ ions exhibit four-fold
rotational symmetry of the C-N axis (C4) along with three-fold rotation around
the C-N axis (C3), while in orthorhombic phase (T < 165K) only C3 rotation is
present. Around room temperature, the characteristic relaxation times for the
C4 rotation is found to be ps while for the C3 rotation ps. The -dependent
rotational relaxation times were fitted with Arrhenius equations to obtain
activation energies. Our data show a close correlation between the C4
rotational mode and the temperature dependent dielectric permittivity. Our
findings on the rotational dynamics of CH3NH3+ and the associated dipole have
important implications on understanding the low exciton binding energy and slow
charge recombination rate in CH3NH3PbI3 which are directly relevant for the
high solar cell performance
Flux melting in BSCCO: Incorporating both electromagnetic and Josephson couplings
Multilevel Monte Carlo simulations of a BSCCO system are carried out
including both Josephson as well as electromagnetic couplings for a range of
anisotropies. A first order melting transition of the flux lattice is seen on
increasing the temperature and/or the magnetic field. The phase diagram for
BSCCO is obtained for different values of the anisotropy parameter .
The best fit to the experimental results of D. Majer {\it et al.} [Phys. Rev.
Lett. {\bf 75}, 1166 (1995)] is obtained for provided one
assumes a temperature dependence of the
penetration depth with . Assuming a dependence
the best fit is obtained for . For finite anisotropy the data is shown to collapse on a straight line
when plotted in dimensionless units which shows that the melting transition can
be satisfied with a single Lindemann parameter whose value is about 0.3. A
different scaling applies to the case. The energy jump is
measured across the transition and for large values of it is found to
increase with increasing anisotropy and to decrease with increasing magnetic
field. For infinite anisotropy we see a 2D behavior of flux droplets with a
transition taking place at a temperature independent of the magnetic field. We
also show that for smaller values of anisotropy it is reasonable to replace the
electromagnetic coupling with an in-plane interaction represented by a Bessel
function of the second kind (), thus justifying our claim in a previous
paper.Comment: 12 figures, revtex
Assessment of genetic variability and character association for grain yield and its component traits in bread wheat (Triticum aestivum L.)
A study was conducted for estimating genetic variability and characters association for eleven yield components using 169 genotypes (13 parents, 78 F1 and 78 F2) of bread wheat through half-diallel mating design during rabi season 2012-13 and 2013-14. The genetic variability, heritability in broad sense, genetic advance, correlation coefficients and path analysis were carried out for the assessment of genotypes through eleven yield component traits namely; days to 50% flowering, days to maturity, plant height, spike length, number of effective tillers per plant, number of grains per spikelet, number of grains per spike, 1000-grain weight, biological yield per plant, harvest index and grain yield per plant. Analysis of variance showed significant differences (at1% level of significance) for all the traits under study in both the generations (F1 and F2). The phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) were high for plant height followed by number of effective tillers per plant, biological yield per plant, grain yield per plant, while high heritability coupled with high genetic advance were recorded for plant height and spike length in both F1 and F2 generations, respectively. Grain yield per plant was positively and significantly associated with a number of effective tillers per plant, spike length, number of grains per spike, 1000-grain weight, biological yield per plant and harvest index while significantly but negatively associated with plant height. Path analysis revealed that the traits namely biological yield per plant, number of effective tillers per plant, number of grains per spike, plant height and harvest index exhibited positive direct effects on grain yield at both phenotypic and genotypic level in both generation (F1 and F2). These results, thereby suggests that yield improvement in breads wheats could be possible by emphasizing these traits while making selections in early generations
String Cosmology in Anisotropic Bianchi-II Space-time
The present study deals with a spatially homogeneous and anisotropic
Bianchi-II cosmological model representing massive strings. The energy-momentum
tensor, as formulated by Letelier (1983), has been used to construct a massive
string cosmological model for which the expansion scalar is proportional to one
of the components of shear tensor. The Einstein's field equations have been
solved by applying a variation law for generalized Hubble's parameter that
yields a constant value of deceleration parameter in Bianchi-II space-time. A
comparative study of accelerating and decelerating modes of the evolution of
universe has been carried out in the presence of string scenario. The study
reveals that massive strings dominate the early Universe. The strings
eventually disappear from the Universe for sufficiently large times, which is
in agreement with the current astronomical observations.Comment: 11 pages, 6 figures (To appear in Mod. Phys. Lett. A) In this
version, the cosmic string has been directed along z-direction and the
resultant field equations have been solved exactl
Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and protein concentration in Indian wheat cultivars
© 2020 The Authors Nitrogen (N) fertilizer represents a significant cost for the grower and may also have environmental impacts through nitrate leaching and N2O (a greenhouse gas) emissions associated with denitrification. The objectives of this study were to quantify the genetic variability in N partitioning and N remobilization in Indian spring wheat cultivars and identify traits for improved grain yield and grain protein content for application in breeding N-efficient cultivars. Twenty-eight bread wheat cultivars and two durum wheat cultivars were tested in field experiments in two years in Maharashtra, India. Growth analysis was conducted at anthesis and harvest to assess above-ground dry matter (DM) and dry matter and N partitioning. Flag-leaf photosynthesis rate (Amax), flag-leaf senescence rate and canopy normalized difference vegetation index (NDVI) were also assessed. Significant N × genotype level interaction was observed for grain yield and N-use efficiency. There was a positive linear association between post-anthesis flag-leaf Amax and grain yield amongst the 30 genotypes under high N (HN) conditions. Flag-leaf Amax was positively associated with N uptake at anthesis (AGNA). Under both HN and low N (LN) conditions, higher N uptake at anthesis was associated with delayed onset of flag-leaf senescence and higher grain yield. Under N limitation, there was a genetic negative correlation between grain yield and grain protein concentration. Deviation from this negative relationship (grain protein deviation or GPD) was related to genotypic differences in post-anthesis N uptake. It is concluded that N uptake at anthesis was an important determinant of flag-leaf photosynthesis rate and grain yield under high N conditions; while post-anthesis N uptake was an important determinant of GPD of wheat grown under low to moderate N conditions in India
Practical long-distance quantum key distribution system using decoy levels
Quantum key distribution (QKD) has the potential for widespread real-world
applications. To date no secure long-distance experiment has demonstrated the
truly practical operation needed to move QKD from the laboratory to the real
world due largely to limitations in synchronization and poor detector
performance. Here we report results obtained using a fully automated, robust
QKD system based on the Bennett Brassard 1984 protocol (BB84) with low-noise
superconducting nanowire single-photon detectors (SNSPDs) and decoy levels.
Secret key is produced with unconditional security over a record 144.3 km of
optical fibre, an increase of more than a factor of five compared to the
previous record for unconditionally secure key generation in a practical QKD
system.Comment: 9 page
- …