105,385 research outputs found
Observing collapse in two colliding dipolar Bose-Einstein condensates
We study the collision of two Bose-Einstein condensates with pure dipolar
interaction. A stationary pure dipolar condensate is known to be stable when
the atom number is below a critical value. However, collapse can occur during
the collision between two condensates due to local density fluctuations even if
the total atom number is only a fraction of the critical value. Using full
three-dimensional numerical simulations, we observe the collapse induced by
local density fluctuations. For the purpose of future experiments, we present
the time dependence of the density distribution, energy per particle and the
maximal density of the condensate. We also discuss the collapse time as a
function of the relative phase between the two condensates.Comment: 6 pages, 7 figure
Dynamics of a two-species Bose-Einstein condensate in a double well
We study the dynamics of a two-species Bose-Einstein condensate in a double
well. Such a system is characterized by the intraspecies and interspecies
s-wave scattering as well as the Josephson tunneling between the two wells and
the population transfer between the two species. We investigate the dynamics
for some interesting regimes and present numerical results to support our
conclusions. In the case of vanishing intraspecies scattering lengths and a
weak interspecies scattering length, we find collapses and revivals in the
population dynamics. A possible experimental implementation of our proposal is
briefly discussed.Comment: 7 pages, 5 figure
Unchanged thermopower enhancement at the semiconductor-metal transition in correlated FeSbTe
Substitution of Sb in FeSb by less than 0.5% of Te induces a transition
from a correlated semiconductor to an unconventional metal with large effective
charge carrier mass . Spanning the entire range of the semiconductor-metal
crossover, we observed an almost constant enhancement of the measured
thermopower compared to that estimated by the classical theory of electron
diffusion. Using the latter for a quantitative description one has to employ an
enhancement factor of 10-30. Our observations point to the importance of
electron-electron correlations in the thermal transport of FeSb, and
suggest a route to design thermoelectric materials for cryogenic applications.Comment: 3 pages, 3 figures, accepted for publication in Appl. Phys. Lett.
(2011
Detection of a single-charge defect in a metal-oxide-semiconductor structure using vertically coupled Al and Si single-electron transistors
An Al-AlO_x-Al single-electron transistor (SET) acting as the gate of a
narrow (~ 100 nm) metal-oxide-semiconductor field-effect transistor (MOSFET)
can induce a vertically aligned Si SET at the Si/SiO_2 interface near the
MOSFET channel conductance threshold. By using such a vertically coupled Al and
Si SET system, we have detected a single-charge defect which is tunnel-coupled
to the Si SET. By solving a simple electrostatic model, the fractions of each
coupling capacitance associated with the defect are extracted. The results
reveal that the defect is not a large puddle or metal island, but its size is
rather small, corresponding to a sphere with a radius less than 1 nm. The small
size of the defect suggests it is most likely a single-charge trap at the
Si/SiO_2 interface. Based on the ratios of the coupling capacitances, the
interface trap is estimated to be about 20 nm away from the Si SET.Comment: 5 pages and 5 figure
From random walks to distances on unweighted graphs
Large unweighted directed graphs are commonly used to capture relations
between entities. A fundamental problem in the analysis of such networks is to
properly define the similarity or dissimilarity between any two vertices.
Despite the significance of this problem, statistical characterization of the
proposed metrics has been limited. We introduce and develop a class of
techniques for analyzing random walks on graphs using stochastic calculus.
Using these techniques we generalize results on the degeneracy of hitting times
and analyze a metric based on the Laplace transformed hitting time (LTHT). The
metric serves as a natural, provably well-behaved alternative to the expected
hitting time. We establish a general correspondence between hitting times of
the Brownian motion and analogous hitting times on the graph. We show that the
LTHT is consistent with respect to the underlying metric of a geometric graph,
preserves clustering tendency, and remains robust against random addition of
non-geometric edges. Tests on simulated and real-world data show that the LTHT
matches theoretical predictions and outperforms alternatives.Comment: To appear in NIPS 201
Shintani functions, real spherical manifolds, and symmetry breaking operators
For a pair of reductive groups , we prove a geometric criterion
for the space of Shintani functions to be finite-dimensional
in the Archimedean case.
This criterion leads us to a complete classification of the symmetric pairs
having finite-dimensional Shintani spaces.
A geometric criterion for uniform boundedness of is
also obtained.
Furthermore, we prove that symmetry breaking operators of the restriction of
smooth admissible representations yield Shintani functions of moderate growth,
of which the dimension is determined for .Comment: to appear in Progress in Mathematics, Birkhause
Dipolar effect in coherent spin mixing of two atoms in a single optical lattice site
We show that atomic dipolar effects are detectable in the system that
recently demonstrated two-atom coherent spin dynamics within individual lattice
sites of a Mott state. Based on a two-state approximation for the two-atom
internal states and relying on a variational approach, we have estimated the
spin dipolar effect. Despite the absolute weakness of the dipole-dipole
interaction, it is shown that it leads to experimentally observable effects in
the spin mixing dynamics.Comment: 4 pages, 3 color eps figures, to appear in Phys. Rev. Let
Recommended from our members
Layered Fabrication of Branched Networks Using Lindenmayer Systems
A current challenge impeding the growth of bone tissue engineering is the lack of
functional scaffolds of geometric sizes greater than 10mm due to the inability of cells to
survive deep within the scaffold. It is hypothesized that these scaffolds must have an
inbuilt nutrient distribution network to sustain the uniform growth of cells. In this
paper, we seek to enhance the design and layered fabrication of scaffold internal
architecture through the development of Lindenmayer systems, a graphical language
based theory to create nutrient delivery networks. The scaffolds are fabricated using the
Texas Instruments DLP⢠system through UVâphotopolymerization to produce
polyethylene glycol hydrogels with internal branch structures. The paper will discuss
the Lindenmayer system, process planning algorithms, layered fabrication of samples,
challenges and future tasks.Mechanical Engineerin
- âŚ