25,501 research outputs found
Origin of the mixed-order transition in multiplex networks: the Ashkin-Teller model
Recently, diverse phase transition (PT) types have been obtained in multiplex
networks, such as discontinuous, continuous, and mixed-order PTs. However, they
emerge from individual systems, and there is no theoretical understanding of
such PTs in a single framework. Here, we study a spin model called the
Ashkin-Teller (AT) model in a mono-layer scale-free network; this can be
regarded as a model of two species of Ising spin placed on each layer of a
double-layer network. The four-spin interaction in the AT model represents the
inter-layer interaction in the multiplex network. Diverse PTs emerge depending
on the inter-layer coupling strength and network structure. Especially, we find
that mixed-order PTs occur at the critical end points. The origin of such
behavior is explained in the framework of Landau-Ginzburg theory.Comment: 10 pages, 5 figure
Environmental Effects of Space Shuttle Solid Rocket Motor Exhaust Plumes
The deposition of NOx and HCl in the stratosphere from the space shuttle solid rocket motors (SRM) and exhaust plume is discussed. A detailed comparison between stratospheric deposition rates using the baseline SRM propellant and an alternate propellant, which replaces ammonium perchlorate by ammonium nitrate, shows the total NOx deposition rate to be approximately the same for each propellant. For both propellants the ratio of the deposition rates of NOx to total chlorine-containing species is negligibly small. Rocket exhaust ground cloud transport processes in the troposphere are also examined. A brief critique of the multilayer diffusion models (presently used for predicting pollutant deposition in the troposphere) is presented, and some detailed cloud rise calculations are compared with data for Titan 3C launches. The results show that, when launch time meteorological data are used as input, the model can reasonably predict measured cloud stabilization heights
First passage time for random walks in heterogeneous networks
The first passage time (FPT) for random walks is a key indicator of how fast
information diffuses in a given system. Despite the role of FPT as a
fundamental feature in transport phenomena, its behavior, particularly in
heterogeneous networks, is not yet fully understood. Here, we study, both
analytically and numerically, the scaling behavior of the FPT distribution to a
given target node, averaged over all starting nodes. We find that random walks
arrive quickly at a local hub, and therefore, the FPT distribution shows a
crossover with respect to time from fast decay behavior (induced from the
attractive effect to the hub) to slow decay behavior (caused by the exploring
of the entire system). Moreover, the mean FPT is independent of the degree of
the target node in the case of compact exploration. These theoretical results
justify the necessity of using a random jump protocol (empirically used in
search engines) and provide guidelines for designing an effective network to
make information quickly accessible.Comment: 5 pages, 3 figure
An Efficient Modified "Walk On Spheres" Algorithm for the Linearized Poisson-Boltzmann Equation
A discrete random walk method on grids was proposed and used to solve the
linearized Poisson-Boltzmann equation (LPBE) \cite{Rammile}. Here, we present a
new and efficient grid-free random walk method. Based on a modified `` Walk On
Spheres" (WOS) algorithm \cite{Elepov-Mihailov1973} for the LPBE, this Monte
Carlo algorithm uses a survival probability distribution function for the
random walker in a continuous and free diffusion region. The new simulation
method is illustrated by computing four analytically solvable problems. In all
cases, excellent agreement is observed.Comment: 12 pages, 5 figure
Planar sandwich antennas for submillimeter applications
A planar receiving antenna with a predictable pattern at submillimeter wavelength is demonstrated experimentally for the first time. It is single lobed and efficient, with a gain of approximately 8 dB at a wavelength of 119 µm
NO sub X Deposited in the Stratosphere by the Space Shuttle Solid Rocket Motors
The possible effects of the interaction of the plumes from the two solid rocket motors (SRM) from the space shuttles and mixing of the rocket exhaust products and ambient air in the base recirculation region on the total nitrous oxide deposition rate in the stratosphere were investigated. It was shown that these phenomena will not influence the total NOx deposition rate. It was also shown that uncertainties in the particle size of Al2O3, size distributions and particle/gas drag and heat transfer coefficients will not have a significant effect on the predicted NOx deposition rate. The final results show that the total mass flow of NOx leaving the plume at 30 km altitude is 4000 g./sec with a possible error factor of 3. For a vehicle velocity of 1140 meter/sec this yields an NOx deposition rate of about 3.5 g./meter. The corresponding HCl deposition rate at this altitude is about a factor of 500 greater than this value
Cosmological perturbations in a gravity with quadratic order curvature couplings
We present a set of equations describing the evolution of the scalar-type
cosmological perturbation in a gravity with general quadratic order curvature
coupling terms. Equations are presented in a gauge ready form, thus are ready
to implement various temporal gauge conditions depending on the problems. The
Ricci-curvature square term leads to a fourth-order differential equation for
describing the spacetime fluctuations in a spatially homogeneous and isotropic
cosmological background.Comment: 5 pages, no figure, To appear in Phys. Rev.
- …