898 research outputs found

    Pressure-induced Miscibility Increase of CH4 in H2O: A Computational Study Using Classical Potentials

    Get PDF
    Methane and water demix under normal (ambient) pressure and temperature conditions, due to the polar nature of water and the apolar nature of methane. Recent experimental work has shown, though, that increasing the pressure to values between 1 and 2 GPa (10 to 20 kbar) leads to a marked increase of methane solubility in water, for temperatures which are well below the critical temperature for water. Here we perform molecular dynamics simulations based on classical force fields – which are well-used and have been validated at ambient conditions – for different values of pressure and temperature. We find the expected increase in miscibility for mixtures of methane and supercritical water; however our model fails to reproduce the experimentally observed increase in methane solubility at large pressures and below the critical temperature of water. This points to the need to develop more accurate force fields for methane and methane-water mixtures under pressure

    Spin dynamics of heterometallic Cr7M wheels (M = Mn, Zn, Ni) probed by inelastic neutron scattering

    Full text link
    Inelastic neutron scattering has been applied to the study of the spin dynamics of Cr-based antiferromagnetic octanuclear rings where a finite total spin of the ground state is obtained by substituting one Cr(III) ion (s = 3/2) with Zn (s = 0), Mn (s = 5/2) or Ni (s = 1) di-cations. Energy and intensity measurements for several intra-multiplet and inter-multiplet magnetic excitations allow us to determine the spin wavefunctions of the investigated clusters. Effects due to the mixing of different spin multiplets have been considered. Such effects proved to be important to correctly reproduce the energy and intensity of magnetic excitations in the neutron spectra. On the contrary to what is observed for the parent homonuclear Cr8 ring, the symmetry of the first excited spin states is such that anticrossing conditions with the ground state can be realized in the presence of an external magnetic field. Heterometallic Cr7M wheels are therefore good candidates for macroscopic observations of quantum effects.Comment: 9 pages, 11 figures, submitted to Phys. Rev. B, corrected typos and added references, one sentence change

    True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass

    Get PDF
    The mid-infrared (MIR) spans the 3-25 m wavelength range. Rare-earth-ion doped selenide-chalcogenide glasses are being developed for direct-emission MIR fibre lasers. The true Pr3+ absorption cross-section in the 3.5-6 µm wavelength region of a Pr3+-doped (500 ppmw of Pr3+ i.e. 9.47 x 1019 Pr3+ ions cm-3) GeAsGaSe host-glass is presented, after numerically removing the underlying, extrinsic vibrational absorption due to [H-Se-] contamination of the host-glass

    True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass

    Get PDF
    The mid-infrared (MIR) spans the 3-25 m wavelength range. Rare-earth-ion doped selenide-chalcogenide glasses are being developed for direct-emission MIR fibre lasers. The true Pr3+ absorption cross-section in the 3.5-6 µm wavelength region of a Pr3+-doped (500 ppmw of Pr3+ i.e. 9.47 x 1019 Pr3+ ions cm-3) GeAsGaSe host-glass is presented, after numerically removing the underlying, extrinsic vibrational absorption due to [H-Se-] contamination of the host-glass

    Promising emission behavior in Pr 3+ /In selenide-chalcogenide-glass small-core step index fiber (SIF)

    Get PDF
    Selenide-chalcogenide glass, small-core, step-index fiber (SIF), core-doped with Pr3+: 9.51 × 1024 ions m−3 (500 ppmw) is fabricated for the first time with indium to help solubilize Pr3+. Core diameters of 20 or 40 μm are confirmed using scanning electron microscopy and near-field imaging; fibre numerical aperture is ∼0.4. Optical loss is ≥ 4.9 dB m−1 across the 3–9 μm mid-infrared (MIR) spectral range. On pumping at 1.55 μm or 2.013 μm, the SIFs give broad MIR emission across 3.5–6 μm assigned to 3H6 → 3H5 and 3H5 → 3H4. The Pr3+ emission-lifetime at 4.7 μm decreases from bulk-glass (10.1 ± 0.3 ms), to intermediately processed fiber (8.10 ± 0.5 ms) to SIF (7.1 ± 0.5 ms) induced by the processing. On end-pumping SIFs at 2.013 μm, the output pump-power and emission intensity at 4.7 μm became sub-linear and super-linear, respectively, suggesting MIR excited-state saturation is occurring

    Genetic screening of 202 individuals with congenital limb malformations and requiring reconstructive surgery

    Get PDF
    BACKGROUND: Congenital limb malformations (CLMs) are common and present to a variety of specialties, notably plastic and orthopaedic surgeons, and clinical geneticists. The authors aimed to characterise causative mutations in an unselected cohort of patients with CLMs requiring reconstructive surgery. METHODS: 202 patients presenting with CLM were recruited. The authors obtained G-banded karyotypes and screened EN1, GLI3, HAND2, HOXD13, ROR2, SALL1, SALL4, ZRS of SHH, SPRY4, TBX5, TWIST1 and WNT7A for point mutations using denaturing high performance liquid chromatography (DHPLC) and direct sequencing. Multiplex ligation dependent probe amplification (MLPA) kits were developed and used to measure copy number in GLI3, HOXD13, ROR2, SALL1, SALL4, TBX5 and the ZRS of SHH. RESULTS: Within the cohort, causative genetic alterations were identified in 23 patients (11%): mutations in GLI3 (n = 5), HOXD13 (n = 5), the ZRS of SHH (n = 4), and chromosome abnormalities (n = 4) were the most common lesions found. Clinical features that predicted the discovery of a genetic cause included a bilateral malformation, positive family history, and having increasing numbers of limbs affected (all p<0.01). Additionally, specific patterns of malformation predicted mutations in specific genes. CONCLUSIONS: Based on higher mutation prevalence the authors propose that GLI3, HOXD13 and the ZRS of SHH should be prioritised for introduction into molecular genetic testing programmes for CLM. The authors have developed simple criteria that can refine the selection of patients by surgeons for referral to clinical geneticists. The cohort also represents an excellent resource to test for mutations in novel candidate genes

    Characterising refractive index dispersion in chalcogenide glasses

    Get PDF
    Much effort has been devoted to the study of glasses that contain the chalcogen elements (sulfur, selenium and tellurium) for photonics’ applications out to MIR wavelengths. In this paper we describe some techniques for determining the refractive index dispersion characteristics of these glasses. Knowledge of material dispersion is critical in delivering step-index fibres including with high numerical aperture for mid-infrared supercontinuum generation

    Numerical modelling of Tb3+ doped selenide-chalcogenide multimode fibre based spontaneous emission sources

    Get PDF
    A model is developed of a terbium (III) ion doped selenide chalcogenide glass fibre source that provides spontaneous emission within the mid-infrared (MIR) wavelength range. Three numerical algorithms are used to calculate the solution and compare their properties
    corecore