236 research outputs found

    Workmen’s Compensation and the Conflict of Laws in New York

    Get PDF

    Workmen’s Compensation and the Conflict of Laws in New York

    Get PDF

    The cellular and synaptic architecture of the mechanosensory dorsal horn

    Get PDF
    The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception

    Deliberate Exercise of Pregnant Holstein Heifers Improves Milk Composition During Lactation

    Get PDF
    Exercise has substantial impacts on systemic physiology, but little research has been conducted to assess how it may influence dairy cattle in modern confined production systems. Dairy heifers were walked for up to 45 minutes, 4 days per week for 8 weeks during pregnancy to assess impacts on subsequent health and productivity. Heifers that were exercised had increased milk protein and solids-not-fat concentrations for up to 15 weeks into lactation, and increased milk fat and energy-corrected milk production at some time points during this period, as compared to sedentary contemporaries. No adverse or beneficial effects of exercise were found on locomotion, calving ease, date of parturition, or somatic cell scores. These findings point to potential impacts on lactation productivity following exercise in pregnant heifers

    The restricted isometry property for random block diagonal matrices

    Get PDF
    In Compressive Sensing, the Restricted Isometry Property (RIP) ensures that robust recovery of sparse vectors is possible from noisy, undersampled measurements via computationally tractable algorithms. It is by now well-known that Gaussian (or, more generally, sub-Gaussian) random matrices satisfy the RIP under certain conditions on the number of measurements. Their use can be limited in practice, however, due to storage limitations, computational considerations, or the mismatch of such matrices with certain measurement architectures. These issues have recently motivated considerable effort towards studying the RIP for structured random matrices. In this paper, we study the RIP for block diagonal measurement matrices where each block on the main diagonal is itself a sub-Gaussian random matrix. Our main result states that such matrices can indeed satisfy the RIP but that the requisite number of measurements depends on certain properties of the basis in which the signals are sparse. In the best case, these matrices perform nearly as well as dense Gaussian random matrices, despite having many fewer nonzero entries

    A First Analysis of the Stability of Takens' Embedding

    Get PDF
    Takens' Embedding Theorem asserts that when the states of a hidden dynamical system are confined to a low-dimensional attractor, complete information about the states can be preserved in the observed time-series output through the delay coordinate map. However, the conditions for the theorem to hold ignore the effects of noise and time-series analysis in practice requires a careful empirical determination of the sampling time and number of delays resulting in a number of delay coordinates larger than the minimum prescribed by Takens' theorem. In this paper, we use tools and ideas in Compressed Sensing to provide a first theoretical justification for the choice of the number of delays in noisy conditions. In particular, we show that under certain conditions on the dynamical system, measurement function, number of delays and sampling time, the delay-coordinate map can be a stable embedding of the dynamical system's attractor
    corecore