20,261 research outputs found
On Clifford Subalgebras, Spacetime Splittings and Applications
Z2-gradings of Clifford algebras are reviewed and we shall be concerned with
an alpha-grading based on the structure of inner automorphisms, which is
closely related to the spacetime splitting, if we consider the standard
conjugation map automorphism by an arbitrary, but fixed, splitting vector.
After briefly sketching the orthogonal and parallel components of products of
differential forms, where we introduce the parallel [orthogonal] part as the
space [time] component, we provide a detailed exposition of the Dirac operator
splitting and we show how the differential operator parallel and orthogonal
components are related to the Lie derivative along the splitting vector and the
angular momentum splitting bivector. We also introduce multivectorial-induced
alpha-gradings and present the Dirac equation in terms of the spacetime
splitting, where the Dirac spinor field is shown to be a direct sum of two
quaternions. We point out some possible physical applications of the formalism
developed.Comment: 22 pages, accepted for publication in International Journal of
Geometric Methods in Modern Physics 3 (8) (2006
Improved estimators for dispersion models with dispersion covariates
In this paper we discuss improved estimators for the regression and the
dispersion parameters in an extended class of dispersion models (J{\o}rgensen,
1996). This class extends the regular dispersion models by letting the
dispersion parameter vary throughout the observations, and contains the
dispersion models as particular case. General formulae for the second-order
bias are obtained explicitly in dispersion models with dispersion covariates,
which generalize previous results by Botter and Cordeiro (1998), Cordeiro and
McCullagh (1991), Cordeiro and Vasconcellos (1999), and Paula (1992). The
practical use of the formulae is that we can derive closed-form expressions for
the second-order biases of the maximum likelihood estimators of the regression
and dispersion parameters when the information matrix has a closed-form.
Various expressions for the second-order biases are given for special models.
The formulae have advantages for numerical purposes because they require only a
supplementary weighted linear regression. We also compare these bias-corrected
estimators with two different estimators which are also bias-free to the
second-order that are based on bootstrap methods. These estimators are compared
by simulation
Removing zero Lyapunov exponents in volume-preserving flows
Baraviera and Bonatti proved that it is possible to perturb, in the c^1
topology, a volume-preserving and partial hyperbolic diffeomorphism in order to
obtain a non-zero sum of all the Lyapunov exponents in the central direction.
In this article we obtain the analogous result for volume-preserving flows.Comment: 10 page
The Hamilton-Jacobi Approach to Teleparallelism
We intend to analyse the constraint structure of Teleparallelism employing
the Hamilton-Jacobi formalism for singular systems. This study is conducted
without using an ADM 3+1 decomposition and without fixing time gauge condition.
It can be verified that the field equations constitute an integrable system.Comment: 12 pages, no figur
Angular Momentum of the BTZ Black Hole in the Teleparallel Geometry
We carry out the Hamiltonian formulation of the three- dimensional
gravitational teleparallelism without imposing the time gauge condition, by
rigorously performing the Legendre transform. Definition of the gravitational
angular momentum arises by suitably interpreting the integral form of the
constraint equation Gama^ik=0 as an angular momentum equation. The
gravitational angular momentum is evaluated for the gravitational field of a
rotating BTZ black hole.Comment: 17 pages, no figures, v2: some misprints corrected, Ref.s added, Eq.s
revised, submitted to General Relativity and Gravitatio
- …