3,432 research outputs found

    Four wave mixing with self-phase matching due to collective atomic recoil

    Get PDF
    We describe a method for non-degenerate four-wave mixing in a cold sample of 4-level atoms. An integral part of the four-wave mixing process is a collective instability which spontaneously generates a periodic density modulation in the cold atomic sample with a period equal to half of the wavelength of the generated high-frequency optical field. Due to the generation of this density modulation, phase-matching between the pump and scattered fields is not a necessary initial condition for this wave-mixing process to occur, rather the density modulation acts to "self phase-match" the fields during the course of the wave-mixing process. We describe a one-dimensional model of this process, and suggest a proof-of-principle experiment which would involve pumping a sample of cold Cs atoms with three infra-red pump fields to produce blue light.Comment: to appear in Physical Review Letter

    Cohort, Year and Age Effects in Canadian Wage Data

    Get PDF
    We use Canadian Surveys of Consumer Finances 1971-1993 to study the wages of full-time, full-year male and female workers. Median real wages of 24-year-old males without a university degree fell by 25% between 1978 and 1993. For 24-year-old females the decline was more modest and reversed in 1987, but real wages in 1993 were still significantly lower than they were in 1978. We investigate whether these changes are permanent "cohort" effects or more temporary "year" effects. Graphs of median wages against year and age indicate some periods where year effects are more prominent than cohort effects and other periods where the reverse is true. We then compare the results from two models, one assigning the trends to year effects, the other assigning them to cohort effects, and use these models to produce real wage projections.SCF; wages; cohort

    Inducing strong density modulation with small energy dispersion in particle beams and the harmonic amplifier free electron laser

    Get PDF
    We present a possible method of inducing a periodic density modulation in a particle beam with little increase in the energy dispersion of the particles. The flow of particles in phase space does not obey Liouville's Theorem. The method relies upon the Kuramoto-like model of collective synchronism found in free electron generators of radiation, such as Cyclotron Resonance Masers and the Free Electron Laser. For the case of an FEL interaction, electrons initially begin to bunch and emit radiation energy with a correlated energy dispersion which is periodic with the FEL ponderomotive potential. The relative phase between potential and particles is then changed by approximately 180 degrees. The particles continue to bunch, however, there is now a correlated re-absorption of energy from the field. We show that, by repeating this relative phase change many times, a significant density modulation of the particles may be achieved with only relatively small energy dispersion. A similar method of repeated relative electron/radiation phase changes is used to demonstrate supression of the fundamental growth in a high gain FEL so that the FEL lases at the harmonic only

    Nested, but Separate: Isolating Unrelated Critical Sections in Real-Time Nested Locking

    Get PDF

    Attosecond electronic and nuclear quantum photodynamics of ozone: time-dependent Dyson orbitals and dipole

    Full text link
    A nonadiabatic scheme for the description of the coupled electron and nuclear motions in the ozone molecule was proposed recently. An initial coherent nonstationary state was prepared as a superposition of the ground state and the excited Hartley band. In this situation neither the electrons nor the nuclei are in a stationary state. The multiconfiguration time dependent Hartree method was used to solve the coupled nuclear quantum dynamics in the framework of the adiabatic separation of the time-dependent Schr\"odinger equation. The resulting wave packet shows an oscillation of the electron density between the two chemical bonds. As a first step for probing the electronic motion we computed the time-dependent molecular dipole and the Dyson orbitals. The latter play an important role in the explanation of the photoelectron angular distribution. Calculations of the Dyson orbitals are presented both for the time-independent as well as the time-dependent situations. We limited our description of the electronic motion to the Franck-Condon region only due to the localization of the nuclear wave packets around this point during the first 5-6 fs

    The role of quantum fluctuations in the optomechanical properties of a Bose-Einstein condensate in a ring cavity

    Full text link
    We analyze a detailed model of a Bose-Einstein condensate trapped in a ring optical resonator and contrast its classical and quantum properties to those of a Fabry-P{\'e}rot geometry. The inclusion of two counter-propagating light fields and three matter field modes leads to important differences between the two situations. Specifically, we identify an experimentally realizable region where the system's behavior differs strongly from that of a BEC in a Fabry-P\'{e}rot cavity, and also where quantum corrections become significant. The classical dynamics are rich, and near bifurcation points in the mean-field classical system, the quantum fluctuations have a major impact on the system's dynamics.Comment: 11 pages, 11 figures, submitted to PR
    • 

    corecore